簡易檢索 / 詳目顯示

研究生: 陳韻如
Chen, Yun-Ru
論文名稱: 運用大數據探討城市活力樣態特性—以府城歷史街區為例
Exploring the Characteristics of Urban Vitality Patterns Using Big Data: A Case Study of Tainan
指導教授: 鄭皓騰
Cheng, Hao-Teng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 106
中文關鍵詞: 城市活力時空樣態POI視覺感知Google Maps
外文關鍵詞: Urban vitality, Spatiotemporal patterns, POI, Visual perception, Google Maps
相關次數: 點閱:25下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 城市活力是衡量都市空間品質的重要指標,代表促進地區社會經濟活動與人類互動的能力,源自人類活動與都市空間的交互作用。活力不僅體現於經濟層面,更反映了都市的生活品質與獨特性,成為現行代表都市競爭力和宜居性的重要關鍵。隨著大數據及其技術方法的成熟,得以突破過往研究以單一視角探討城市活力的限制,以不同資料類型探究多維度面向及空間感知層面探討城市活力。
    本研究目的為探討城市活力時空樣態特性與其影響因子,選定台南府城歷史街區為實證範圍,整合Google Maps POI資料、街景影像與空間圖資不同資料類型。研究設計與操作上,利用集群分析、核密度估計與主成分分析以描述時間樣態變化與空間分布特性,並運用SegNet模型掌握使用者對於街景之視覺感知,最後以迴歸分析綜合探索影響城市活力的重要環境影響因素。
    研究結果顯示,台南府城歷史街區的城市活力具有明顯的時間與空間差異,活力熱區會隨平假日與日夜時段而變化,平日的活動範圍整體上相較於假日更為廣泛,且主要集中於白天時段,日間與夜間的活動區域亦呈現空間重組與位移的特徵。在視覺感知方面,透過語意分割技術量化街景影像中四個主要的視覺元素,進一步反映人本視角下,街道景觀視覺感受之空間分布。迴歸分析結果顯示出視覺感知的重要性,道路視率在平假日皆對城市活力呈現顯著負向影響,而建築視率則呈現顯著正向影響,顯示街道立面的視覺呈現,可能是影響都市活動的重要條件。建議未來可進一步探討府城歷史街區中道路結構、建築量體等空間特徵對城市活力的影響。
    總結以上,本研究整合POI資料與街景影像進行城市活力分析,驗證了此方法應用於結構複雜的歷史街區之可行性,展現於空間使用密度、功能組合與視覺感知等面向上。未來可依據不同的規劃議題與資料可操作性,彈性選擇合適的大數據來源,作為都市規劃分析之輔助工具。

    Urban vitality is a key indicator of spatial quality, reflecting the ability of urban spaces to foster socioeconomic activities and human interaction. This study examines the spatiotemporal patterns of urban vitality and its influencing factors in the historical districts of Tainan. Multiple data sources were integrated, including Google Maps POI data, street view imagery, and spatial datasets.
    Methodologically, cluster analysis, kernel density estimation, and principal component analysis were applied to describe temporal variations and spatial distributions. A SegNet model was employed to quantify visual perception from street view imagery, and regression analysis was conducted to identify the environmental determinants of vitality.
    The results reveal significant spatiotemporal heterogeneity. Vitality hotspots shift between weekdays and holidays, as well as between daytime and nighttime, with weekday activities covering a broader spatial range. Regression analysis further shows that road view rates exert a significant negative effect, while building view rates have a significant positive effect on vitality, suggesting that street façade visibility may both constrain and attract urban activities.
    This study demonstrates the feasibility of integrating POI data and street view imagery to analyze vitality in complex historical districts. The findings highlight the potential of emerging data sources to capture spatial usage, functional mix, and perceptual dimensions, offering valuable insights for urban planning and design.

    第一章 緒論 11 第一節 研究動機與目的 11 第二節 研究範疇 14 第三節 名詞定義與解釋 16 第四節 研究內容與流程 17 第五節 研究限制 19 第二章 文獻回顧 21 第一節 城市活力與樣態特性 21 第二節 城市活力量測與影響因子之評估方式 26 第三節 Google平台資料應用於都市研究 33 第三章 研究設計 35 第一節 研究內容與操作架構 35 第二節 城市活力資料庫建置 42 第三節 資料分析 46 第四章 實證分析 56 第一節 城市活力時空分析 56 第二節 影響城市活力之因子分析 83 第五章 結論與建議 88 第一節 研究結論 88 第二節研究建議 90 參考文獻 92 附錄一 電信信令人口統計資料分析 98 附錄二 POI功能分類數量統計 100 附錄三 Two-Step集群分析各分群營業比例 102 附錄四 階層式集群分析凝聚係數與變化量 103

    Badrinarayanan, V., Handa, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293.
    Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495.
    Beer, C. (2011). Centres that never sleep? Planning for the night-time economy within the commercial centres of Australian cities. Australian Planner, 48(3), 141-147.
    Chen, S., Lang, W., & Li, X. (2022). Evaluating urban vitality based on geospatial big data in Xiamen Island, China. Sage Open, 12(4), 21582440221134519.
    Chen, T., Hui, E. C., Wu, J., Lang, W., & Li, X. (2019). Identifying urban spatial structure and urban vibrancy in highly dense cities using georeferenced social media data. Habitat International, 89, 102005.
    Chen, Y., Yu, B., Shu, B., Yang, L., & Wang, R. (2023). Exploring the spatiotemporal patterns and correlates of urban vitality: Temporal and spatial heterogeneity. Sustainable cities and society, 91, 104440.
    Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. Proceedings of the IEEE conference on computer vision and pattern recognition,
    Dai, L., Zheng, C., Dong, Z., Yao, Y., Wang, R., Zhang, X., Ren, S., Zhang, J., Song, X., & Guan, Q. (2021). Analyzing the correlation between visual space and residents' psychology in Wuhan, China using street-view images and deep-learning technique. City and Environment Interactions, 11, 100069.
    Delclòs-Alió, X., & Miralles-Guasch, C. (2018). Looking at Barcelona through Jane Jacobs’s eyes: Mapping the basic conditions for urban vitality in a Mediterranean conurbation. Land Use Policy, 75, 505-517.
    Della Spina, L. (2019). Multidimensional assessment for “culture-led” and “community-driven” urban regeneration as driver for trigger economic vitality in urban historic centers. Sustainability, 11(24), 7237.
    Duan, J., Wang, H., Liu, L., & Zhang, J. (2025). The attraction gradient of urban functions: How does functional mix at multiple scales predict urban vitality. Cities, 156, 105516.
    Dubey, A., Naik, N., Parikh, D., Raskar, R., & Hidalgo, C. A. (2016). Deep Learning the City: Quantifying Urban Perception At A Global Scale. arXiv preprint arXiv:1608.01769.
    Gao, C., Li, S., Sun, M., Zhao, X., & Liu, D. (2024). Exploring the Relationship between Urban Vibrancy and Built Environment Using Multi-Source Data: Case Study in Munich. Remote Sensing, 16(6), 1107.
    Gehl, J. (2011). Life between buildings : using public space. Island Press.
    Google. (n.d.). About popular times, wait times & visit duration data. Google Business Profile Help. Retrieved June 2 from https://support.google.com/business/answer/6263531
    Harantová, V., Mazanec, J., Štefancová, V., Mašek, J., & Foltýnová, H. B. (2023). Two-step cluster analysis of passenger mobility segmentation during the COVID-19 pandemic. Mathematics, 11(3), 583.
    Huang, X., Gong, P., Wang, S., White, M., & Zhang, B. (2022). Machine learning modeling of vitality characteristics in historical preservation zones with multi-source data. Buildings, 12(11), 1978.
    Jalaladdini, S., & Oktay, D. (2012). Urban Public Spaces and Vitality: A Socio-Spatial Analysis in the Streets of Cypriot Towns. Procedia - Social and Behavioral Sciences, 35, 664-674.
    Jia, J., Zhang, X., Huang, C., & Luan, H. (2022). Multiscale analysis of human social sensing of urban appearance and its effects on house price appreciation in Wuhan, China. Sustainable cities and society, 81, 103844.
    Jiang, Y., Han, Y., Liu, M., & Ye, Y. (2022). Street vitality and built environment features: A data-informed approach from fourteen Chinese cities. Sustainable cities and society, 79, 103724.
    Kim, Y.-L. (2018). Seoul's Wi-Fi hotspots: Wi-Fi access points as an indicator of urban vitality. Computers, Environment and Urban Systems, 72, 13-24.
    Lan, F., Gong, X., Da, H., & Wen, H. (2020). How do population inflow and social infrastructure affect urban vitality? Evidence from 35 large- and medium-sized cities in China. Cities, 100, 102454.
    Li, J., Kong, N., Lin, S., Zeng, J., Ke, Y., & Chen, J. (2024). Spatial Nonlinear Effects of Street Vitality Constrained by Construction Intensity and Functional Diversity—A Case Study from the Streets of Shenzhen. ISPRS International Journal of Geo-Information, 13(7), 238.
    Li, Q., Cui, C., Liu, F., Wu, Q., Run, Y., & Han, Z. (2022). Multidimensional Urban Vitality on Streets: Spatial Patterns and Influence Factor Identification Using Multisource Urban Data. ISPRS International Journal of Geo-Information, 11(1), 2.
    Li, X., Li, Y., Jia, T., Zhou, L., & Hijazi, I. H. (2022). The six dimensions of built environment on urban vitality: Fusion evidence from multi-source data. Cities, 121, 103482.
    Liu, S., Zhang, L., & Long, Y. (2019). Urban vitality area identification and pattern analysis from the perspective of time and space fusion. Sustainability, 11(15), 4032.
    Long, Y., & Liu, L. (2017). How green are the streets? An analysis for central areas of Chinese cities using Tencent Street View. PloS one, 12(2), e0171110.
    Ma, Z. (2023). Deep exploration of street view features for identifying urban vitality: a case study of Qingdao city. International Journal of Applied Earth Observation and Geoinformation, 123, 103476.
    Maas, P. R. (1984). Towards a theory of urban vitality University of British Columbia.
    Meng, Y., & Xing, H. (2019). Exploring the relationship between landscape characteristics and urban vibrancy: A case study using morphology and review data. Cities, 95, 102389.
    Montgomery, J. (1998). Making a city: Urbanity, vitality and urban design. Journal of urban design, 3(1), 93-116.
    Mouratidis, K., & Poortinga, W. (2020). Built environment, urban vitality and social cohesion: Do vibrant neighborhoods foster strong communities? Landscape and Urban Planning, 204, 103951.
    Paköz, M. Z., Yaratgan, D., & Şahin, A. (2022). Re-mapping urban vitality through Jane Jacobs’ criteria: The case of Kayseri, Turkey. Land Use Policy, 114, 105985.
    Sulis, P., Manley, E., Zhong, C., & Batty, M. (2018). Using mobility data as proxy for measuring urban vitality. Journal of Spatial Information Science, 2018(16), 137-162.
    Sung, H., & Lee, S. (2015). Residential built environment and walking activity: Empirical evidence of Jane Jacobs’ urban vitality. Transportation Research Part D: Transport and Environment, 41, 318-329.
    Tang, J., & Long, Y. (2019). Measuring visual quality of street space and its temporal variation: Methodology and its application in the Hutong area in Beijing. Landscape and Urban Planning, 191, 103436.
    Tang, S., & Ta, N. (2022). How the built environment affects the spatiotemporal pattern of urban vitality: A comparison among different urban functional areas. Computational Urban Science, 2(1), 39.
    Tu, W., Zhu, T., Xia, J., Zhou, Y., Lai, Y., Jiang, J., & Li, Q. (2020). Portraying the spatial dynamics of urban vibrancy using multisource urban big data. Computers, Environment and Urban Systems, 80, 101428.
    Wang, X., Zhang, Y., Yu, D., Qi, J., & Li, S. (2022). Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China. Land Use Policy, 119, 106162.
    Wu, C., Ye, X., Ren, F., & Du, Q. (2018). Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China. Cities, 77, 104-116.
    Wu, C., Ye, Y., Gao, F., & Ye, X. (2023). Using street view images to examine the association between human perceptions of locale and urban vitality in Shenzhen, China. Sustainable cities and society, 88, 104291.
    Wu, C., Zhao, M., & Ye, Y. (2023). Measuring urban nighttime vitality and its relationship with urban spatial structure: A data-driven approach. Environment and Planning B: Urban Analytics and City Science, 50(1), 130-145.
    Wu, J., Ta, N., Song, Y., Lin, J., & Chai, Y. (2018). Urban form breeds neighborhood vibrancy: A case study using a GPS-based activity survey in suburban Beijing. Cities, 74, 100-108.
    Xia, C., Yeh, A. G.-O., & Zhang, A. (2020). Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities. Landscape and Urban Planning, 193, 103669.
    Xiao, L., Lo, S., Liu, J., Zhou, J., & Li, Q. (2021). Nonlinear and synergistic effects of TOD on urban vibrancy: Applying local explanations for gradient boosting decision tree. Sustainable cities and society, 72, 103063.
    Ye, Y., Li, D., & Liu, X. (2018). How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China. Urban Geography, 39(4), 631-652.
    Yue, Y., Zhuang, Y., Yeh, A. G., Xie, J.-Y., Ma, C.-L., & Li, Q.-Q. (2017). Measurements of POI-based mixed use and their relationships with neighbourhood vibrancy. International Journal of Geographical Information Science, 31(4), 658-675.
    Zhang, A., Li, W., Wu, J., Lin, J., Chu, J., & Xia, C. (2021). How can the urban landscape affect urban vitality at the street block level? A case study of 15 metropolises in China. Environment and Planning B: Urban Analytics and City Science, 48(5), 1245-1262.
    Zhang, F., Zhou, B., Liu, L., Liu, Y., Fung, H. H., Lin, H., & Ratti, C. (2018). Measuring human perceptions of a large-scale urban region using machine learning. Landscape and Urban Planning, 180, 148-160.
    Jacobs, J. (2006). 美國大城市的死與生:紀念版(金衡山 譯). 南京:譯林出版社. (原著出版於 1961 年)
    Lynch, K. (2004). 優質城市形態(林慶怡、陳朝暉、邱華 譯). 台北:六合出版社. (原著出版於 1981 年)
    內政部. (2023). 112年11月行政區電信信令人口統計資料-鄉鎮市區. 社會經濟資料服務平台.
    陳宥宇. (2021). 以餐飲業 POI 數據探討建成環境對城市活力之影響—以臺北淡水信義線捷運站周邊地區為例 [碩士論文, 國立成功大學].
    臺南市政府文化局. (2017a). 臺南市府城歷史街區計畫 [地圖]. 臺南市, 臺南市政府文化局.
    臺南市政府文化局. (2017b). 臺南市府城歷史街區計畫書. 臺南市政府文化局.
    鍾曜丞. (2021). 探討商圈熱區活力與建成環境之關係── 以桃園為例 [碩士論文, 國立成功大學].
    羅唯瑄. (2020). 透過社群媒體數據探討歷史街區景觀偏好之研究—以府城歷史街道為例 [碩士論文, 國立成功大學].

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE