| 研究生: |
羅珮華 Lo, Pei-Hua |
|---|---|
| 論文名稱: |
毫米波CMOS低相位變化之可變增益放大器與類循環器射頻晶片之研製 Research on Millimeter-Wave CMOS Low-Phase-Variation Variable Gain Amplifier and Quasi-Circulator |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 毫米波 、可變增益放大器 、類循環器 |
| 外文關鍵詞: | Millimeter-Wave, Variable Gain Amplifier, Quasi-Circulator |
| 相關次數: | 點閱:87 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製毫米波CMOS低相位變化之可變增益放大器及類循環器射頻晶片,採用TSMC CMOS 0.18 um或90-nm製程。24-GHz低相位變化之可變增益放大器,改變疊接放大器之閘極偏壓達增益控制,並於後端串接一疊接放大器達相位平坦;60-GHz低相位變化之可變增益低雜訊放大器程,使用curreent steering技術達增益控制,並適當選擇電晶體尺寸達相位平坦;V-band類循環器,以三個quadruature hybrid使發射端到天線端為相位合成,發射端到接收端為相位消除達高隔離度;K-band類循環器,運用平衡器及耦合器產生之相位消除技術,使發射端洩漏到接收端的訊號相消以達高隔離度;整合於24-GHz CMOS人體呼吸心跳訊號感測射頻晶片之類循環器,運用高隔離度寬邊帶耦合器達單天線同時收發功能;整合於60-GHz非接觸式人體呼吸心跳訊號感測射頻晶片之類循環器與可變增益放大器,分別對靜態雜訊消除電路及收發射頻前端電路作驗證。電路設計部分使用Agilent ADS與Ansoft 3-D全波電磁模擬軟體HFSS進行模擬,量測部份皆採用on-wafer方式。依據不同的量測特性參數,相關的量測方法與設置亦有所調整。
This thesis presents the research on millimeter-wave (MMW) CMOS low-phase-variation variable gain amplifiers (VGA) and quasi-circulators, fabricated in standard TSMC 90-nm or 0.18-μm CMOS technologies. Agilent Advanced Design System (ADS) and Ansoft HFSS EM simulator are used for design simulation. The 24-GHz CMOS low-phase-variation VGA using the cascade amplifier method achieves low phase variation in a variable gain mode. The 60-GHz CMOS low-phase-variation variable-gain low noise amplifier (VG-LNA) is based on current steering technique to achieve low phase variation. Moreover, the VGLNA is intergrated with full-360° phase shifter for the phase-array receiver application. The V-band quasi-circulator using the phase combination and cancellation techniques achieves a high isolation. The K-band quasi-circulator based on phase cancellation technique consists of a balun and two couplers. Futhermore, to achieve both low insertion loss and high isolation, the quasi-circulator integrated in 24-GHz CMOS human vital-signs Doppler sensor is implemented by a high isolation borad-side coupler. The 60-GHz low-phase-variation VGA and quasi-circulator are also integrated in the design of the clutter cancellelling subsystem and RF front-end of a 60-GHz CMOS mm-wave life-detection system (MLDS). The measured performances of the designed MMW CMOS RFICs are all performed by using the on-wafer measurement setup.
[1] J. A. Howarth, A. P. Lauterbach, M. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
[2] RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf
[3] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
[4] R. S. P. Tam “CMOS variable gain amplifier,” term paper, University of Toronto, 2002.
[5] F. Ellinger, U. Jörges, U. Mayer, and R. Eickhoff, “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1885–1894, Aug. 2009.
[6] F. Ellinger, U. Lott, and W. Bächtold, “An antenna diversity MMIC vector modulator for HIPERLAN with low power consumption and calibration capability,” IEEE Trans. Microw. Theory Tech., vol. 49, no.5, pp. 964–969, May 2001.
[7] H. Hayashi and M. Muraguchi, “An MMIC variable-gain amplifier using a cascode-connected FET with constant phase deviation,” IEICE Trans. Electron., vol. E81-C, no. 1, pp. 70–77, Jan. 1998.
[8] 歐雅文,毫米波CMOS次諧波降頻混頻器與低相位變化之可變增益放大器射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百年。
[9] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[10] K. L. Feng, “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” in IEEE Int. Solid-State Circuits Conf., Feb. 1999 pp. 224–225.
[11] J. Xiao, I. Mehr and J. Silva-Martinez “A high dynamic range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuits., vol. 42, pp. 292–301, Feb. 2007.
[12] C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai, H. Wang, “A 71–76 GHz CMOS variable gain amplifier using current steering technique,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2008, pp. 609–612.
[13] F. Ellinger and H. Jäckel, “Low-Cost BiCMOS variable gain LNA at Ku-band with ultra-low power consumption,” IEEE Trans. Microw. Theory Tech., Vol.52, pp. 702–708, Feb. 2004.
[14] U. Mayer, F. Ellinger, R. Eickhoff, “Analysis and reduction of phase variations of variable gain amplifiers verified by CMOS implementation at C-band,” IET Circuits Devices Syst., Vol. 4, Iss. 5, pp. 433–439, Feb. 2010.
[15] F. Ellinger, U. Jörges, U. Mayer, and R. Eickhoff, “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1885–1894, Aug. 2009.
[16] 張盛富,張嘉展,無線通訊射頻晶片模組設計-射頻晶片篇,全華科技,2008。
[17] H.-W. Chiu, S.-S. Lu, and Y.-S. Lin, “A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption,” IEEE Trans. Microw. Theory Tech, vol. 53, no. 3, pp. 813–824, Mar. 2005.
[18] B. Sewiolo, G. Fischer, and R. Weigel, “A 30 GHz variable gain amplifier with high output voltage swing for ultra-wideband radar,” IEEE Microw. Wireless Compon. Lett., vol. 19, no.9, pp. 590–592, Sep. 2009.
[19] 郭信智,應用於60-GHz CMOS毫米波射頻接收機前端電路之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十七年。
[20] 呂知穎,毫米波CMOS低變化插入損耗相移器與非對稱型射頻收發開關之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零一年。
[21] Yikun Yu et al, “A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1697–1709, May 2010.
[22] A. Natarajan et al., “A bidirectional RF-combining 60 GHz phased array front-end,” in IEEE Int. Solid-State Circuits Conf., 2007, pp. 202–203.
[23] S.-C. Shin, J.-Y. Huang, K.-Y. Lin, and H. Wang, “A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 797–799, Dec. 2008.
[24] 林宏儒,24-及77-GHz 毫米波CMOS帶通濾波器、相移器及類循環器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十九年。
[25] S. K. Cheung, T. P. Halloran, W. H. Weedon, and C. P. Caldwell, “MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 3, pp. 489–497, Feb. 2010.
[26] D. M. Pozar, Microwave Engineering, 3rd ed. Hoboken, NJ: Wiley, 2005.
[27] H.-S. Wu, C.-W. Wang, and C.-K. C. Tzuang, “CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-Band,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2084–2091, Aug. 2010.
[28] C.-H. Chang, Y.-T. Lo, and J.-F. Kiang, “A 30 GHz Active Quasi-Circulator With Current-Reuse Technique in 0.18 μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 12, pp. 693–695, Dec. 2010.
[29] C.-Y. Kim, J. G. Kim, J. H. Oum, J. R. Yang, D.-K. Kim, J. H. Choi, S.-W. Kwon, S.-H. Jeon, J.-W. Park, and S. Hong, “Tx leakage cancellers for 24 GHz and 77 GHz vehicular radar applications,” in IEEE MTT-S. Int. Microw. Symp. Dig., Nov. 2006, pp. 1402–1405.
[30] 劉佳協,60-GHz毫米波CMOS射頻前端RFICs及關鍵被動元件之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
[31] K. S. Ang and I. D. Robertson, “Analysis and Design of Impedance-Transforming Planar Marchand Baluns,” IEEE Trans. Microw. Theory Tech., Vol. 49, No. 2, pp. 402–406, Feb. 2001.
[32] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[33] 王柏棋,毫米波CMOS鎖相迴路電路及24-GHz注入鎖定振盪器之人體呼吸心跳生理訊號感測射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零一年。
[34] M.-N. Do, D. Dubuc, K. Grenier, L. Bary, L. Mazenq, R. Plana, “High compactness / high isolation 3D-broadside couplers design methodology,” in Asia–Pacific Microw. Conf., Dec. 2006, pp. 799–802.
[35] D. Wan, B. You, L. Sun, “Radio link analysis and design of directional coupler with high isolation for UHF RFID reader,” in IEEE Int. Conf. Commun. Tech., Nov. 2008, pp. 256–259.
[36] H.-R. Chuang, H.-C. Kuo, F.-L. Lin, T.-H. Huang, C.-S. Kuo, and Y.-W. Ou, “60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoring,” IEEE Sensors Journal, vol. 12, no. 3, pp. 602–609, Mar. 2012.
[37] K.-M. Chen, D. Misra, H. Wang, H.-R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. BME-33, pp. 697–702, Jul. 1986.
[38] H.-R. Chuang, Y.-F. Chen, and K.-M. Chen, “Automatic clutter-canceller for microwave life-detection system,” IEEE Trans. Instrum. Meas., vol. 40, pp. 747–750, Aug. 1991.
[39] K.-M. Chen, J. Kallis, Y. Huang, J.-T. Sheu, A. Norman, C.-S. Lai, and A. Halac, “EM wave life-detection system for post-earthquake rescue operation,” in Proc.1994 URSI Radio Science Meeting, 1994, pp. 19–24.
[40] K.-M. Chen, Y. Huang, A. Norman, and Y. Yerramille, “EMwave life-detection system for post-earthquake rescue operation-field test and modifications,” in Proc.1996 IEEE/APS-URSI Int. Symp., 1996, pp. 35–37.
[41] K.-M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble and behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, no. 1, pp. 105–114, Jan. 2000.
[42] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838–848, Mar. 2004.
[43] Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, “Frequency tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in Ka-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2023–2032, May 2006.
[44] C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4464–4471, Dec. 2006.
[45] C. Li, Y. Xiao, and J. Lin, “A 5 GHz double-sideband radar sensor chip in 0.18-μm CMOS for non-contact vital sign detection,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 494–496, Jul. 2008.
[46] C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 567–570.
[47] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3143–3152, Dec. 2008.
[48] C. Li, X. Yu, D. Li, L. Ran, and J. Lin, “Software configurable 5.8 GHz radar sensor receiver chip in 0.13 μm CMOS for non-contact vital sign detection,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 97–100.
[49] C. Li, Y. Xiao, C.-M. Lee, D. Li, L. Ran, and J. Lin, “High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-μm CMOS for noncontact vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1410–1419, May 2010.
[50] Y. Yan, C. Li, and J. Lin, “Effects of I/Q mismatch on measurement of periodic movement using a doppler radar sensor,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jan. 2010, pp. 196–199.
[51] B. K. Park, O. Boric-Lubecke, and V. M. Lubecke “Arctangent demodulation with DC offset compensation in quadrature doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073–1079, May 2007.
[52] Q. Zhou, J. Liu, A. Host-Madsen, O. Boric-Lubecke, and V. Lubecke, “Detection of multiple heartbeats using Doppler radar,” in Proc. IEEE ICASSP, May 2006, vol. 2, pp. 1160–1163.
[53] O. Boric-Lubecke, V. Lubecke, A. Host-Madsen, D. Samardzija, and K. Cheung, “Doppler radar sensing of multiple subjects in single and multiple antenna systems,” in Proc. 7th Int. Conf. on Telecommunication in Modern Satellite, Cable and Broadcasting Services, Sept. 2005, vol. 1, pp. 7–11.
[54] F. J. Huang and K. O, “A 0.5 μm CMOS T/R switch for 900 MHz wireless applications,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 486–492, Mar. 2001.