| 研究生: |
許凱閔 Hsu, Kai-Min |
|---|---|
| 論文名稱: |
生質尼龍的合成與奈米纖維膜抗菌分析 Fabrication and characterization of bionylon-56 nanofiber membranes for antibacterial activity |
| 指導教授: |
吳意珣
Ng, I-Son |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 戊二胺 、生質尼龍 、奈米纖維 、PHMB 、海藻酸鈉 、抗菌材料 、綠色生物製程 |
| 外文關鍵詞: | Bio-nylon, PA56, cadaverine, PHMB, nanofiber, antibacterial activity |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生質尼龍是一種具有發展潛力的環保再生材料。近幾年利用微生物發酵法生產生質尼龍以取代傳統石化製程得到了廣泛的關注,因其性質與傳統化學合成之尼龍相似,且具有生物分解及生物相容等特性,能適用於醫療材料中。本研究探討一連續的綠色生物製程,從戊二胺生產到奈米纖維的製作與改質,開發出具有抗菌能力的奈米纖維膜。
首先,以0.05 mg/mL ~0.2 mg/mL NTG 化學誘變法使谷胺酸桿菌生產高濃度的賴胺酸,其菌株存活率大於 50 %,挑選平板上周圍有紅色變化的誘變菌株分別於 LB及 M9Y 培養基進行培養,結果顯示相較於野生種菌株,誘變菌株的生長皆較差,在加入 5 g/L Yeast extract 的 LB 培養基,發現誘變菌株可以生產0.5 g/L 及0.6 g/L 賴胺酸,高於野生種菌株的賴胺酸濃度,然而在 M9Y 培養基中,誘變菌株以酪胺酸為主要產物,賴胺酸則為次級產物。
選用高拷貝單質體系統於大腸桿菌 BL21(DE3) 表達賴胺酸脫羧酶 (LdcC),通過全細胞催化賴胺酸生產戊二胺,發現 LdcC 的最佳酶活反應條件為 pH 5,利用1 M 賴胺酸為底物反應 6 小時後可轉化生成92 g/L 戊二胺,轉化率可達 90 %,利用丁酮為萃取溶劑再經由蒸餾可得到純度為 95 % 的戊二胺。
將純化的戊二胺與二元酸合成尼龍鹽前體,此生物製程取得的尼龍鹽56 及尼龍鹽512 均有耐熱性及熱穩定性。進一步以固態溶熔聚合法合成尼龍56 及尼龍512,由示差掃描熱分析儀 (DSC) 及熱重分析 (TGA) 分析其熔點分別為 250 oC 及 206 oC、結晶點分別為 220 oC 及 186 oC、降解溫度分別為 421 oC 及 469 oC。最後通過電紡絲裝置製備尼龍奈米纖維,在電子顯微鏡觀察下 (SEM),尼龍56 及尼龍512 直徑分別為 95.1 nm 及 104 nm。藉由 Reactive Red 141 染劑與纖維駐色,引入亞硫酸根離子鍵提升抗菌劑 PHMB 的固定效率,其抗菌纖維對於大腸桿菌Escherichia coli BL21(DE3) 及假單孢菌 Pseudomonas putida 有良好的抗菌特性。不同改質條件下,以海藻酸鈉改質的膜片中,海藻酸鈉吸附量為 5.56 g/g,PHMB 吸附量為 0.1 g/g,對於大腸桿菌與假單孢菌的抗菌率分別為 96.7 % 及 100 %。本實驗完成了綠色生物製程的尼龍纖維膜製備,對於尼龍的改質及抗菌等特性仍需深入研究,以提升其應用價值。
The continuous development of biomaterial polyamide 56 (PA56) and 512 (PA512) nanofiber membranes via electrospinning is synthesized by a green bioprocess in this study. At first, cadaverine was bioconversion from lysine through lysine decarboxylase (LdcC) in E. coli. The LdcC can achieve nearly 90% conversion to produce 92 g/L cadaverine from 1 M lysine and showed enzyme activity with wide pH range. Then bio-polyamide 56 (i.e, PA56) and bio-polyamide 512 (i.e, PA512) were polymerized from cadaverine with adipic acid. The bio-nylon 56 and 512 was further synthesized via melt polymerization. The melting point and crystallization point for PA56 were 250oC and 220oC, which were determined by differential scanning calorimetry (DSC). For PA512, the melting point and crystallization point were 206oC and 186oC, respectively.
Whereas the thermogravimetric analysis (TGA) analyzes for degradation temperature were 421°C and 469oC for PA56 and PA512, respectively. Afterwards, PA56 and PA512 nanofiber membrane was prepared by electrospinning with polyethylene terephthalate (PET) acted as a supporting layer and further characterized by scanning electron microscopy (SEM). The Reactive Red 141 was directly reacted with amino group of PA56 and PA512 to form dyed membranes (P-Dye) and enhanced poly-(hexamethylene biguanide) (PHMB) grafting on PAM and achieved PHMB modified membranes (P-Dye-PHMB). The modified membranes were examined for the antibacterial activity against pathogens which showed the excellent activity against Escherichia coli and Pseudomonas putida for PA56 nanofiber membrane, but no antibacterial effect for PA512 nanofiber membrane. The results indicate that P-Dye-PHMB is a potential material for biomedical applications and functional textiles.
[1] Willke, T. H., Vorlop, K. D. (2004). Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology, 66(2), 131-142.
[2] Koutinas, A. A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Garcia, I. L., Kookos, I. K., Lin, C. S. K. (2014). Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews, 43(8), 2587-2627.
[3] Keifer, D. H. (2000). The Establishment of Modern Polymer Science by Wallace H. Carothers: Wilmington, Delaware, November 17, 2000. American Chemical Society.
[4] Kim, H. T., Baritugo, K. A., Oh, Y. H., Hyun, S. M., Khang, T. U., Kang, K. H., Lee, M. O. (2018). Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustainable Chemistry & Engineering, 6(4), 5296-5305.
[5] Park, S. J., Kim, E. Y., Noh, W., Park, H. M., Oh, Y. H., Lee, S. H., Lee, S. Y. (2013). Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metabolic Engineering, 16, 42-47.
[6] Jiang, Y., Loos, K. (2016). Enzymatic synthesis of biobased polyesters and polyamides. Polymers, 8(7), 243.
[7] Buschke, N., Schröder, H., Wittmann, C. (2011). Metabolic engineering of Corynebacterium glutamicum for production of 1, 5‐diaminopentane from hemicellulose. Biotechnology Journal, 6(3), 306-317.
[8] Kind, S., Kreye, S., Wittmann, C. (2011). Metabolic engineering of cellular transport for overproduction of the platform chemical 1, 5-diaminopentane in Corynebacterium glutamicum. Metabolic Engineering, 13(5), 617-627.
[9] Kim, J. H., Seo, H. M., Sathiyanarayanan, G., Bhatia, S. K., Song, H. S., Kim, J., Yang, Y. H. (2017). Development of a continuous L-lysine bioconversion system for cadaverine production. Journal of Industrial and Engineering Chemistry, 46, 44-48.
[10] Gilbert, W. De Magnete; Courier New York, 1958.
[11] Boys, C. V. (1887). On the production, properties, and some suggested uses of the finest threads. Proceedings of the Physical Society of London, 9(1), 8-9.
[12] Xue, J., Wu, T., Dai, Y., Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298-5415.
[13] Liu, B., Zhang, S., Wang, X., Yu, J., Ding, B. (2015). Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration. Journal of Colloid and Interface Science, 457, 203-211.
[14] Gao, A., Zhang, H., Sun, G., Xie, K., Hou, A. (2017). Light-induced antibacterial and UV-protective properties of polyamide 56 biomaterial modified with anthraquinone and benzophenone derivatives. Materials & Design, 130, 215-222.
[15] Kyulavska, M., Toncheva-Moncheva, N., Rydz, J. (2017). Biobased Polyamide ecomaterials and their susceptibility to biodegradation. Handbook of Ecomaterials.
[16] Kinoshita, S., Udaka, S., Shimono M. (1957). Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. The Journal of General and Applied Microbiology, 3(3), 193-205.
[17] Ikeda, M., Nakagawa, S. (2003). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Applied Microbiology and Biotechnology, 62(2-3), 99-109.
[18] Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Goesmann, A. (2003). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. Journal of Biotechnology, 104(1-3), 5-25.
[19] Lee, J. Y., Na, Y. A., Kim, E., Lee, H. S., Kim, P. (2016). The actinobacterium Corynebacterium glutamicum, an industrial workhorse. Journal of Microbiol and Biotechnol, 26(5), 807-822.
[20] Kind, S., Wittmann, C. (2011). Bio-based production of the platform chemical 1, 5-diaminopentane. Applied Microbiology and Biotechnology, 91(5), 1287.
[21] Félix, F. K. D. C., Letti, L. A. J., Vinícius de Melo Pereira, G., Bonfim, P. G. B., Soccol, V. T., Soccol, C. R. (2019). L-lysine production improvement: a review of the state of the art and patent landscape focusing on strain development and fermentation technologies. Critical Reviews in Biotechnology, 39(8), 1031-1055.
[22] Ikehata, H., Ono, T. (2011). The mechanisms of UV mutagenesis. Journal of Radiation Research, 52(2), 115-125.
[23] Shah, A. H., Hameed, A. B. D. U. L., Khan, G. M. (2002). Fermentative production of L-lysine: fungal fermentation and mutagenesis-II: A review. Pakistan Journal of Pharmaceutical Sciences, 15(2), 29-35.
[24] Ikeda, M., Ohnishi, J., Hayashi, M., Mitsuhashi, S. (2006). A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. Journal of Industrial Microbiology and Biotechnology, 33(7), 610-615.
[25] Steele, D. B., Stowers, M. D. (1991). Techniques for selection of industrially important microorganisms. Annual Review of Microbiology, 45(1), 89-106.
[26] Harmsen, P. F., Hackmann, M. M., Bos, H. L. (2014). Green building blocks for bio‐based plastics. Biofuels, Bioproducts and Biorefining, 8(3), 306-324.
[27] Kashiwagi, K., Igarashi, K. (1988). Adjustment of polyamine contents in Escherichia coli. Journal of Bacteriology, 170(7), 3131-3135.
[28] Eppelmann, K., Nossin, P. M., Raeven, L. J., Kremer, S. M., Wubbolts, M. G. (2013). U.S. Patent No. 8,497,098. Washington, DC: U.S. Patent and Trademark Office.
[29] Noh, M., Yoo, S. M., Kim, W. J., Lee, S. Y. (2017). Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Systems, 5(4), 418-426.
[30] Winnacker, M., Rieger, B. (2016). Biobased polyamides: recent advances in basic and applied research. Macromolecular Rapid Communications, 37(17), 1391-1413.
[31] Yamanobe, T., Kurihara, Y., Uehara, H., Komoto, T. (2007). Structure and
characterization of nylon 46. Journal of Molecular Structure, 829(1-3), 80–87.
[32] Qian, Z. G., Xia, X. X., Lee, S. Y. (2009). Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnology and Bioengineering, 104(4), 651-662.
[33] Kanjee, U., Gutsche, I., Alexopoulos, E., Zhao, B., El Bakkouri, M., Thibault, G., Houry, W. A. (2011). Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. The EMBO Journal, 30(5), 931-944.
[34] Ma, W., Cao, W., Zhang, H., Chen, K., Li, Y., Ouyang, P. (2015). Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnology Letters, 37(4), 799-806.
[35] Lemonnier, M., Lane, D. (1998). Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology, 144(3), 751-760.
[36] Kind, S., Jeong, W. K., Schröder, H., Zelder, O., Wittmann, C. (2010). Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Applied and Environmental Microbiology., 76(15), 5175-5180.
[37] Shin, J., Joo, J. C., Lee, E., Hyun, S. M., Kim, H. J., Park, S. J., Park, K. (2018). Characterization of a whole-cell biotransformation using a constitutive lysine decarboxylase from Escherichia coli for the high-level production of cadaverine from industrial grade L-lysine. Applied Biochemistry and Biotechnology, 185(4), 909-924.
[38] Yang, P., Li, X., Liu, H., Li, Z., Liu, J., Zhuang, W., Ying, H. (2019). Thermodynamics, crystal structure, and characterization of a bio-based nylon 54 monomer. CrystEngComm, 21(46), 7069-7077.
[39] Lee, J. A., Ahn, J. H., Kim, I., Li, S., Lee, S. Y. (2020). Synthesis, Characterization, and Application of Fully Biobased and Biodegradable Nylon-4, 4 and-5, 4. ACS Sustainable Chemistry & Engineering, 8(14), 5604-5614.
[40] Hao, X., Guo, Y., Li, Y., Yang, Y., Shen, Y., Hao, X., Wang, J. (2015). Study on the structure and properties of novel bio-based polyamide56 fiber compared with normal polyamide fibers. In 2015 International Conference on Materials, Environmental and Biological Engineering. Atlantis Press.
[41] Kim, H. T., Baritugo, K. A., Hyun, S. M., Khang, T. U., Sohn, Y. J., Kang, K. H., Hwang, Y. T. (2019). Development of Metabolically Engineered Corynebacterium glutamicum for Enhanced Production of Cadaverine and Its Use for the Synthesis of Bio-Polyamide 510. ACS Sustainable Chemistry & Engineering.
[42] Chae, T. U., Ahn, J. H., Ko, Y. S., Kim, J. W., Lee, J. A., Lee, E. H., Lee, S. Y. (2020). Metabolic engineering for the production of dicarboxylic acids and diamines. Metabolic Engineering, 58, 2-16.
[43] Cheng, K. K., Zhao, X. B., Zeng, J., Wu, R. C., Xu, Y. Z., Liu, D. H., Zhang, J. A. (2012). Downstream processing of biotechnological produced succinic acid. Applied Microbiology and Biotechnology, 95(4), 841-850.
[44] Lee, S. J., Song, H., Lee, S. Y. (2006). Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Applied and Environmental Microbiology, 72(3), 1939-1948.
[45] Choi, S., Song, H., Lim, S. W., Kim, T. Y., Ahn, J. H., Lee, J. W., Lee, S. Y. (2016). Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification. Biotechnology and Bioengineering, 113(10), 2168-2177.
[46] Ahn, J. H., Lee, J. A., Bang, J., Lee, S. Y. (2018). Membrane engineering via trans-unsaturated fatty acids production improves succinic acid production in Mannheimia succiniciproducens. Journal of Industrial Microbiology & Biotechnology, 45(7), 555-566.
[47] Beardslee, T., Picataggio, S. (2012). Bio‐based adipic acid from renewable oils. Lipid Technology, 24(10), 223-225.
[48] Yu, J. L., Xia, X. X., Zhong, J. J., Qian, Z. G. (2014). Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnology and Bioengineering, 111(12), 2580-2586.
[49] Cheong, S., Clomburg, J. M., Gonzalez, R. (2016). Energy-and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nature Biotechnology, 34(5), 556.
[50] Zhao, M., Huang, D., Zhang, X., Koffas, M. A., Zhou, J., Deng, Y. (2018). Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metabolic Engineering, 47, 254-262.
[51] Clomburg, J. M., Blankschien, M. D., Vick, J. E., Chou, A., Kim, S., Gonzalez, R. (2015). Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metabolic Engineering, 28, 202-212.
[52] Turk, S. C., Kloosterman, W. P., Ninaber, D. K., Kolen, K. P., Knutova, J., Suir, E., Raamsdonk, L. M. (2016). Metabolic engineering toward sustainable production of nylon-6. ACS Synthetic Biology, 5(1), 65-73.
[53] Joo, J. C., Khusnutdinova, A. N., Flick, R., Kim, T., Bornscheuer, U. T., Yakunin, A. F., Mahadevan, R. (2017). Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chemical Science, 8(2), 1406-1413.
[54] Raj, K., Partow, S., Correia, K., Khusnutdinova, A. N., Yakunin, A. F., Mahadevan, R. (2018). Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metabolic Engineering Communications, 6, 28-32.
[55] Chae, T. U., Ahn, J. H., Ko, Y. S., Kim, J. W., Lee, J. A., Lee, E. H., Lee, S. Y. (2020). Metabolic engineering for the production of dicarboxylic acids and diamines. Metabolic Engineering, 58, 2-16.
[56] Funk, I., Rimmel, N., Schorsch, C., Sieber, V., Schmid, J. (2017). Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis. Journal of Industrial Microbiology & Biotechnology, 44(10), 1491-1502.
[57] Lee, H., Han, C., Lee, H. W., Park, G., Jeon, W., Ahn, J., Lee, H. (2018). Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources. Biotechnology for Biofuels, 11(1), 310.
[58] Bowen, C. H., Bonin, J., Kogler, A., Barba-Ostria, C., Zhang, F. (2016). Engineering Escherichia coli for conversion of glucose to medium-chain ω-hydroxy fatty acids and α, ω-dicarboxylic acids. ACS Synthetic Biology, 5(3), 200-206.
[59] Vasishtha, A. K., Trivedi, R. K., Das, G. (1990). Sebacic acid and 2‐octanol from castor oil. Journal of the American Oil Chemists' Society, 67(5), 333-337.
[60] Lin, J., Sherrington, D. C. (1994). Recent developments in the synthesis, thermostability and liquid crystal properties of aromatic polyamides. Polymer Synthesis . Springer, Berlin, Heidelberg, 177-219.
[61] Yamazaki, N., Higashi, F., Kawabata, J. (1974). Studies on reactions of the N‐phosphonium salts of pyridines. XI. Preparation of polypeptides and polyamides by means of triaryl phosphites in pyridine. Journal of Polymer Science: Polymer Chemistry Edition, 12(9), 2149-2154.
[62] Higashi, F., Nishi, T. (1986). Direct polyamidation with thionyl chloride in N‐methyl‐pyrrolidone. Journal of Polymer Science Part A: Polymer Chemistry, 24(4), 701-706.
[63] MALAKPOUR, S., Dinari, M. (2010). High performance polymers in ionic liquids: a review on prospects for green polymer chemistry. Part I: polyamides. Iranian Polymer Journal, 19(12), 983-1004.
[64] Morgan, P. W. (1965). Condensation polymers: by interfacial and solution methods (Vol. 10). Interscience Publishers.
[65] Enkelmann, V., Wegner, G. (1976). Mechanism of interfacial polycondensation and the direct synthesis of stable polyamide membranes. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 177(11), 3177-3189.
[66] Papaspyrides, C. D., Porfyris, A. D., Rulkens, R., Grolman, E., Kolkman, A. J. (2016). The effect of diamine length on the direct solid state polycondensation of semi‐aromatic nylon salts. Journal of Polymer Science Part A: Polymer Chemistry, 54(16), 2493-2506.
[67] Vouyiouka, S. N., Karakatsani, E. K., Papaspyrides, C. D. (2005). Solid state polymerization. Progress in Polymer Science, 30(1), 10-37.
[68] Bai, Y., Huang, L., Huang, T., Long, J., Zhou, Y. (2013). Synthesis and characterization of a water-soluble nylon copolyamide. Polymer, 54(16), 4171-4176.
[69] Haider, A., Haider, S., Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165-1188.
[70] Ng, I. S., Ooi, C. W., Liu, B. L., Peng, C. T., Chiu, C. Y., Chang, Y. K. (2020). Antibacterial efficacy of chitosan-and poly (hexamethylene biguanide)-immobilized nanofiber membrane. International Journal of Biological Macromolecules.
[71] Gao, Y., Cranston, R. (2008). Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78(1), 60-72.
[72] Zhao, T., Chen, Q. (2016). Halogenated phenols and polybiguanides as antimicrobial textile finishes. Antimicrobial Textiles, Woodhead Publishing, 141-153.
[73] Benavides, S., Villalobos-Carvajal, R., Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110(2), 232-239.
[74] Dolphen, R., Sakkayawong, N., Thiravetyan, P., Nakbanpote, W. (2007). Adsorption of Reactive Red 141 from wastewater onto modified chitin. Journal of Hazardous Materials, 145(1-2), 250-255.
[75] Vallino, J. J., Stephanopoulos, G. (1994). Carbon flux distributions at the glucose 6‐phosphate branch point in Corynebacterium glutamicum during lysine overproduction. Biotechnology Progress, 10(3), 327-334.
[76] Hong, Y. G., Kim, H. J., Jeon, J. M., Moon, Y. M., Hong, J. W., Joo, J. C., Yang, Y. H. (2018). Selective recovery of cadaverine from lysine decarboxylase bioconversion solution using methyl ethyl ketone. Journal of Industrial and Engineering Chemistry, 64, 167-172.
[77] Yang, P., Peng, X., Wang, S., Li, D., Li, M., Jiao, P., Ying, H. (2020). Crystal structure, thermodynamics, and crystallization of bio-based polyamide 56 salt. CrystEngComm, 22(18), 3234-3241.
[78] Yan, Y., Gooneie, A., Ye, H., Deng, L., Qiu, Z., Reifler, F. A., Hufenus, R. (2018). Morphology and crystallization of biobased polyamide 56 blended with polyethylene terephthalate. Macromolecular Materials and Engineering, 303(9), 1800214.
[79] Wu, S., Wang, B., Zheng, G., Liu, S., Dai, K., Liu, C., Shen, C. (2014). Preparation and characterization of macroscopically electrospun polyamide 66 nanofiber bundles. Materials Letters, 124, 77-80.
[80] Vitchuli, N., Shi, Q., Nowak, J., Kay, K., Caldwell, J. M., Breidt, F., Zhang, X. (2011). Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications. Science and Technology of Advanced Materials, 12(5), 055004.
[81] Venkatram, M., Narasimha Murthy, H. N. R., Gaikwad, A., Mankunipoyil, S. A., Ramakrishna, S., Ayalasomayajula Ratna, P. (2018). Antibacterial and Flame Retardant Properties of Ag-MgO/Nylon 6 Electrospun Nanofibers for Protective Applications. Clothing and Textiles Research Journal, 36(4), 296-309.
[82] Kharaghani, D., Lee, H., Ishikawa, T., Nagaishi, T., Kim, S. H., Kim, I. S. (2019). Comparison of fabrication methods for the effective loading of Ag onto PVA nanofibers. Textile Research Journal, 89(4), 625-634.
[83] Cheah, W. Y., Show, P. L., Ng, I. S., Lin, G. Y., Chiu, C. Y., Chang, Y. K. (2019). Antibacterial activity of quaternized chitosan modified nanofiber membrane. International Journal of Biological Macromolecules, 126, 569-577.
[84] Zhao, T., Chen, Q. (2016). Halogenated phenols and polybiguanides as antimicrobial textile finishes. Antimicrobial Textiles, Woodhead Publishing, 141-153.