| 研究生: |
鐘逸軒 Chung, Yi-Hsuan |
|---|---|
| 論文名稱: |
以螯合型交換樹酯分離鈷、鎳之研究 Separation of Nickel and Cobalt Using Chelating ion Exchange Resin |
| 指導教授: |
申永輝
Shen, yun-hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 廢鋰離子電池 、離子交換 、樹脂 、分離 |
| 外文關鍵詞: | Spent Li-ion Battery, ion exchange, resin, separation |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因為3C產品以及電動汽機車的市場發展迅速,人類對鋰離子電池的需求量也大幅上升,在處理廢鋰離子電池時,常以濕法冶金的方式來做處理,在鋰離子電池正極材料的浸漬液中,含有有價金屬Ni、Co、Li、Mn四種主要金屬,其中以Ni、Co性質最為相近且最難分離,因此本論文針對鋰離子電池正極材料的浸漬液中有價金屬之分離進行研究,主要透過離子交換技術將Ni、Co金屬分離,以利後續高純度回收原料之生產。
以管柱法分別對上述四種元素進行選擇性的研究,研究的結果螯合型陽離子交換樹脂(M4195)對目標金屬的選擇性依序為Ni> Co > Mn > Li,且在pH值實驗中,四種金屬的選擇性也是越高越好。
將浸漬液稀釋後調整至pH=1,進料濃度約為2000ppm並以固定流速通入填充M4195樹脂之管柱進行離子交換反應,樹脂吸附進料液中親和力較高的Ni以及少量的Co,而收集交換尾液中Co、Mn、Li,操作至Ni吸附飽和後,以固定流速通入脫附劑6NH2SO4將負載於M4195樹脂上的Ni脫附富集,後將上方收集之交換尾液調整至pH=2,以固定流速通入填充M4195樹脂之管柱進行離子交換反應,樹脂吸附進料中親和力較高的Co,而Mn、Li則隨交換尾液排出並收集,操作至Co吸附飽和後,以固定流速通入脫附劑2NH2SO4將負載於M4195樹脂上的Co脫附富集,後將收集之交換尾液調整至pH=5,以(NH4)2S2O8作為沉澱劑使Mn氧化沉澱而分離,Mn分離率約為99%,藉此達到將廢鋰離子電池正極材料之浸漬液中有價金屬分離。
With the market for 3C products and electric vechicle is developing rapidly, the demand for lithium-ion batteries has also increased dramatically. When dealing with waste lithium-ion batteries, hydrometallurgy methods were usually used to recover metals in the cathode materials of lithium-ion batteries. The sample contains four main valuable metals Ni, Co, Li and Mn. Among them, Ni and Co are the most similar in chemical properties and most difficult to separate.
Due to the strong adsorption behavior of Ni on M4195 resin in pH=1, Ni was separated first when the sample was passed through a column filled with M4195 resin for ion exchange separation. The loaded resin was then eluted with 6N H2SO4. The remaining liquid was passed through a column filled with M4195 resin for ion exchange separation in pH=2 again. The loaded resin was eluted with 2N H2SO4.Then the remaining liquid only contains Mn and Li. Using (NH4)2S2O8 as a precipitant to separate Mn by selective precipitation. The remaining liquid after precipitation only contains Li and the valuable metals Ni, Co, Li, and Mn in the leaching solution were separated and recovered.
[1] 呂佩瑩 and 楊模樺 "鋰電池市場應現況" 工業材料雜誌, p. 81, 2006.
[2] 馮芳瑞, "日本鋰電池回收現況(上)" 工研院世界材料網.
[3] 柯賢文, "鋰電池" 科學發展, vol. 482, p. 52, 2013.
[4] 許荏賓, "溶劑萃取分離廢二次鋰電池有價金屬" 碩士, 環境工程與管理系, 朝陽科技大學, 台中市, 2016.
[5] 劉家兒, "鋰電池材料之發展現況" 工研院世界材料網.
[6] 林炳明, "鋰電池從材料研發到系統應用已全面展開" 工業材料雜誌, vol. 387, p. 80, 2019.
[7] 劉如熹, "鋰離子二次電池材料簡介", 化學, vol. 57, no. 2, pp. 149-150, 1999.
[8] 廖世傑, "動力電池正負極材料發展趨勢" 工研院材料世界網.
[9] 鄭如翔 and 黃炳照, "鋰離子電池正極材料之發展" (in 繁體中文), 化工, vol. 58, no. 5, pp. 10-39, 2011.
[10] 李清華, "稀貴金屬溼法冶金資源化技術" 工業材料雜誌, no. 371, 2017.
[11] 方聖予 and 曹申, "稀貴金屬火法純化暨資源化技術" 工業材料雜誌, no. 371, 2017.
[12] 蘇英源, 冶金學. 2000.
[13] C. E. Harland, Ion exchange: theory and practice. Royal Society of Chemistry, 2007.
[14] M. Luqman, Ion exchange technology I: theory and materials. Springer Science & Business Media, 2012.
[15] G. Schmuckler, "Chelating resins—their analytical properties and applications," Talanta, vol. 12, no. 3, pp. 281-290, 1965.
[16] 丁桓如, 工业用水处理工程. 清华大学出版社有限公司, 2005.
[17] 朱屯, "萃取與離子交換" ed: 冶金工業出版社, 2005.
[18] 陳穩如, "新型選擇性樹脂的製備及其重金屬分選之應用研究" 碩士, 材料及資源工程系碩士班, 國立臺北科技大學, 台北市, 2002.
[19] 葉子維, "分離廢鋰離子電池中有價金屬之研究" 碩士, 資源工程學系, 國立成功大學, 台南市, 2018.
[20] 謝佳頴, "以離子交換樹脂分離藍泥浸漬液中鈷、鎳、鋁之研究" 碩士, 資源工程學系碩博士班, 國立成功大學, 台南市, 2012.
[21] W. J. Weber and J. A. Borchardt, Physicochemical processes for water quality control. Wiley-Interscience New York, 1972.
[22] A. A. Atia, A. M. Donia, and K. Z. Elwakeel, "Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups," Reactive and Functional Polymers, vol. 65, no. 3, pp. 267-275, 2005.
[23] A. M. Donia, A. A. Atia, H. El-Boraey, and D. H. Mabrouk, "Uptake studies of copper (II) on glycidyl methacrylate chelating resin containing Fe2O3 particles," Separation and purification technology, vol. 49, no. 1, pp. 64-70, 2006.
[24] P. Ling et al., "Adsorption of divalent heavy metal ions onto IDA-chelating resins: simulation of physicochemical structures and elucidation of interaction mechanisms," Talanta, vol. 81, no. 1-2, pp. 424-432, 2010.
[25] R. R. Navarro, K. Tatsumi, K. Sumi, and M. Matsumura, "Role of anions on heavy metal sorption of a cellulose modified with poly (glycidyl methacrylate) and polyethyleneimine," Water research, vol. 35, no. 11, pp. 2724-2730, 2001.
[26] A. Da̧browski, Z. Hubicki, P. Podkościelny, and E. Robens, "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method," Chemosphere, vol. 56, no. 2, pp. 91-106, 2004.
[27] C. V. Diniz, F. M. Doyle, and V. S. T. Ciminelli, "EFFECT OF pH ON THE ADSORPTION OF SELECTED HEAVY METAL IONS FROM CONCENTRATED CHLORIDE SOLUTIONS BY THE CHELATING RESIN DOWEX M-4195," Separation Science and Technology, vol. 37, no. 14, pp. 3169-3185, 2002.
[28] F. D. Mendes and A. H. Martins, "Selective sorption of nickel and cobalt from sulphate solutions using chelating resins," International Journal of Mineral Processing, vol. 74, no. 1-4, pp. 359-371, 2004.
[29] C. V. Diniz, V. S. T. Ciminelli, and F. M. Doyle, "The use of the chelating resin Dowex M-4195 in the adsorption of selected heavy metal ions from manganese solutions," Hydrometallurgy, vol. 78, no. 3-4, pp. 147-155, 2005.
[30] R. R. Grinstead, "Selective absorption of copper, nickel, cobalt and other transition metal ions from sulfuric acid solutions with the chelating ion exchange resin XFS 4195," Hydrometallurgy, vol. 12, no. 3, pp. 387-400, 1984.
[31] F. D. Mendes and A. H. Martins, "Recovery of nickel and cobalt from acid leach pulp by ion exchange using chelating resin," Minerals Engineering, vol. 18, no. 9, pp. 945-954, 2005.
[32] L. Chen, X. Tang, Y. Zhang, L. Li, Z. Zeng, and Y. Zhang, "Process for the recovery of cobalt oxalate from spent lithium-ion batteries," Hydrometallurgy, vol. 108, no. 1-2, pp. 80-86, 2011.
[33] X. Chen, B. Xu, T. Zhou, D. Liu, H. Hu, and S. Fan, "Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries," Separation and Purification Technology, vol. 144, pp. 197-205, 2015.
[34] R.-C. Wang, Y.-C. Lin, and S.-H. Wu, "A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries," Hydrometallurgy, vol. 99, no. 3-4, pp. 194-201, 2009.