簡易檢索 / 詳目顯示

研究生: 池弘偉
Chih, Hung-Wei
論文名稱: 全場式光學外差干涉儀應用於量測雙折射晶體光學參數之設計與研究
Full-Field Heterodyne Interferometer for the Optical Parameters of the Birefringent Materials
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 113
中文關鍵詞: 外差干涉儀液晶盒.主軸角度電荷耦合元件 (CCD)相位延遲
外文關鍵詞: Heterodyne Polariscope, CCD, liquid crystal cell., phase retardation, Principal Axis
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在近代光學科技中雙折射晶體是一種最常見的光學元件之一諸如波片、雙折射稜鏡、液晶…等等。一般而言,其光學參數包含有主軸角度、相位遲延、折射率及厚度…性等參數,這些參數在光學工業上及生物醫學上均佔有相當程度上的地位,然而能精確地解析出其光學參數對於應用上是相當重要的。

      在過去,外差干涉量測系統常建構在單點量測,若要量測待測物的表面資訊,須經過相當長的時間來反覆量測;因此本實驗將提出一全場式光學外差干涉系統配合影像處理演算法,且高複雜度可程式控制器(Complex Programmable Logic Device, CPLD)改變單點量測系統的電控架構,來進行光學元件的主軸角度、相位遲延等參數的全場光學測量。因為此量測技術是運用共路徑外差雙頻(Heterodyne),可避免週期性誤差且對於雜訊免疫力及靈敏度的提高也有很大的幫助,所以有高精密度的量測優勢。

      此外本文分別利用多階四分之一波片和水平排列相列型液晶為待測物,均證實了此系統對於具雙折射性物質的可行性,且有直接容易的影像處理演算法、簡潔的光學架構及不受光強擾動影響等特點。

     In modern optical technology, the important optical components such as waveplate, birefringence prism, liquid crystal, etc. are made of birefringence materials. In general, optical parameters like principal axis, phase retardation, and refractive index play an important role in optical technology and bio-sensing. Since of that, it is absolutely important to measure optical parameters of tested sample accurately.

     In the past, the heterodyne measuring systems were often based on single-point detection. If we want to capture full-field information of a sample, it must take a long time to obtain. In this thesis, we proposed a full-field heterodyne interferometer combined with image processing algorithm, and take advantage of CPLD (Complex Programmable Logic Device, CPLD) to implement the full-field measurements.

     In experiments, a multiple-order quarter waveplate made of quartz is chosen for demonstration. There have an average absolute error of 0.3660 in the principal axis measurement and 0.762% in the phase retardation measurement that is within the uncertainty range of commercial waveplates. Furthermore, the homogeneous alignment liquid crystal cell was also feasible in this measuring system and had been proven.

     As compared to its conventional counterparts, the proposed heterodyne polariscope has a more compact setup and simpler image processing algorithm.

    Abstract I 中文摘要 III 致謝 V Table of Contents VI List of Figures IX List of Tables XII Chapter 1 Introduction 1 1.1 Preface 1 1.2 Review of the Full-Field Measurements 2 1.3 Destinations and Motivations of the Research 4 1.4 Overview of Chapters 5 Chapter 2 Birefringence Materials 10 2.1 Preface 10 2.2 The Optical Properties of Birefringence 11 2.3 Phase Retardation 14 2.4 The Stress-Optic Law 16 Chapter 3 The Heterodyne Interferometer 25 3.1 Preface 25 3.2 Principle of Traditional Interference 25 3.3 Basic Theory of Heterodyne Interference 26 3.4 Common-Path Heterodyne Interferometry 28 3.5 The Modulating Technique of Electro-Optic Modulator 29 3.5.1 Electro-Optic Effect 30 3.5.2 Electro-Optic Modulation 31 3.5.2.1 Amplitude Modulation 31 3.5.2.2 Phase Modulation 35 3.6 Calibration the axis alignment of an EO modulator 37 3.7 The Circular Polariscope 39 Chapter 4 Complex Programmable Logic Device (CPLD) 45 4.1 Preface 45 4.2 Complex Programmable Logic Device (Max 7128s) 46 4.3 Methodology for using CPLD 48 4.4 CCD Arrangement 48 Chapter 5 Image processing Algorithms 57 5.1 Preface 57 5.2.1 Sinusoidal Phase Modulation with Integrating-Bucket Method [Suzuki et al., 2002] 58 5.2.2 Saw-Tooth Phase Modulation with Integrating-Bucket Method 60 5.2.2.1 Four Integrating-Bucket Method 60 5.2.2.2 Three Integrating-Bucket Method 62 5.2.2.3 Two Integrating-Bucket Method 63 5.2.3 Tested Parameter Embedded in the Amplitude Term 64 5.2.3.1 Algorithm for simultaneous measurement 64 5.2.3.2 One Integrating-Bucket Method 65 Chapter 6 Two Basic Optical Arrangements for Full-Field Measurements 68 6.1 Sequential Measurement for Measuring the Principal Axis Angle and Phase Retardation 69 6.2 Simultaneous Measurement for Measuring the Principal Axis Angle and Phase Retardation 72 6.3 Two-Integrating Bucket Method for Measuring the Principal Axis Angle and Phase Retardation 73 Chapter 7 Experimental Setup and Results 76 7.1 Experimental Setup 76 7.2 Calibration Initial Phase in the Measurement System 76 7.3 Quadrant Determination 78 7.4 Spatial Sampling Principle 78 7.5 Results on Experiment 79 7.5.1 Experimental Results for CPLD 79 7.5.2 Experimental Results for Multi-Order Quarter Waveplate 80 7.5.3 Experimental Results for Homogeneous Alignment Nematic Liquid Crystal 81 7.6 Stability 83 7.7 Discussions 84 7.7.1 The Sources of Experimental Errors 84 7.8 Conclusions 85 Chapter 8 Conclusions and Future Works 105 8.1 Conclusions 105 8.2 Future Works 105 Bibliography 107 Autobiography 113

    Aguanno, M. V., Lakestani, F., Whelan, M. P. and Connelly, M. J., “Single pixel carrier based approach for full field laser interferometry using a CMOS-DSP camera”, Proc. of SPIE, Vol. 5251, pp. 304-312, 2004.

    Akiba, M., Chan, K. P. and Tanno, N., “Real-time, micrometer depth resolved imaging by low-coherence reflectometry and a two-dimensional heterodyne detection technique,” Jpan. J. Appli. Phys., Vol. 39, L11947-L1196, 2000.

    Akiba, M., Chan, K. P. and Tanno, N., “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras, ” Opt. Lett., Vol. 28, pp. 816-818, 2003.

    Chou, C., Shyu, Huang, Y. C. and Yuan, C. K., “Common-path optical heterodyne profilometer: a configuration, ” Applied Optics, Vol. 37, No.19, pp. 4137-4142, 1998.

    Clerc, F. L., Collot, L. and Gross, M., “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett., Vol. 25, pp. 716-718, 2000.

    Dubois, A., Vabre, L., and Boccara, A.C., “Sinusoidally phase-modulated interference microscope for high-speed high-resolution topographic imagery,” Opt. Lett., Vol. 26, pp. 1873-18758, 2001.

    Gazalet, M. G., Ravez, M., Haine, F., Bruneel C., and Bridoux E., “Acousto-optic low frequency shifter,” Appl. Opt., Vol. 33, pp. 1293-1298, 1994.

    Gelmini, E., Minomi, U., and Docchio, F., “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” Opt. Lett., Vol. 19, pp. 213-215, 1994.

    Hariharan, P., Optical interfeometry, Academic Press, 1983.

    Haus, H. A., Waves and fields in optoelectronics, Prientice-Hall, Inc., Englewood Cliffs, New Jersey, Ch. 12, 1984.

    Hecht, Optics, Addision-Wesley, 4th ed., Ch. 8, pp. 336-344, 1998.

    Hou, W., Wilkening, G., “Investigation and compensation of nonlinearity of heterodyne interferometers.”, Pre. Eng. Vol. 14 No. 2, pp. 91-98,1992.

    Kemp, J. C., “Piezo-optical birefringence modulators: new use for a long known effect,” J. Opt. Sci. Am., Vol. 59, pp. 950-954, 1969.

    Kothiyal, M. P. and Delisle, C., “Optical frequency shifter for heterodyne interferometry using coumterrotating wave plates,” Opt. Lett., Vol. 9, pp. 319-321, 1984.

    Kurzynowski, P. and Wozniak, W. A., “Phase retardation measurement in simple and reverse senarmont compensators without calibrated quarter wave plates,” Optik, Vol. 113, pp. 51-53, 2002.

    Lo, Y. L., Lin, J. F., and, S. Y., “Polariscope for the simulataneous measurement of the principle and phase retardation using two phase-locked extractions,” Applied Optics, Vol. 43, pp. 6248-6254, 2004.

    Palik, E. D., Handbook of optical constants of solids III, Academic, New York, p. 729, 1998.

    Rochford, K. B., Rose, A. H. and Wang, C. M., “NIST study investigates retardance uncertainty,” Laser Focus World, pp. 223-227, 1997.

    Rosenbluth, A. E. and Bobroff, N., “Optical sources of nonlinearity in heterodyne interferometers.”, Pre. Eng. Vol. 12 No. 1, pp. 7-11, 1990.

    Sasaki, O., Okazaki, H. and Sakai, M., “Sinusoidal phase modulating interferometer using the integrating-bucket method,” Applied Optics, Vol. 26, No. 6, pp.1089-1093, 1987.

    Su, D. C., Chiu, M. H., and Chen, C. D., “Simple two frequency laser,” Prec. Eng., Vol. 18, pp. 161-163, 1996.

    Suits, J. C., “Magneto-optical rotation and ellipticity measurements with a spinning analyzer,” Rev. Sci. Instrum., Vol. 42, pp. 19-22, 1971.

    Su, Y. Z., Chen S. J., and Yeh, T. L., “Common-path phase-shift interferometry surface plasmon resonance imaging system”, Optics Letters, Vol. 30, no. 12, June 2005.

    Suzuki, T., Yazawa, T., and Sasaki, O., “Two-wavelength laser diode interferometer with time-sharing sinusoidal phase modulation, ” Applied Optics, Vol. 41, No.10, pp. 1972-1976, 2002.

    Takasaki, H., Umeda, N., and Tsukiji, M., “Stabilized transverse Zeeman laser as a new light source for optical measurement,” Appl. Opt., Vol. 19, pp. 435-441, 1980.

    Wickramasingle, H. K., Laser heterodyne probes, Optical Metrology, NATO ASI series, 1987.

    Wyant, J. C., “Use of an ac heterodyne lateral shear interferometer with real-time wavefront correction systems,” Applied Optics, Vol. 14, No.11, pp. 2622-2626, 1975.

    Yariv, A. and Yeh, P., Optical waves in crystal, John Wiley&Sons, Inc., Ch. 4, 1984.

    Yu, X., Wang, D., Wang, D., O, Y. Jian, H., Yan, Z., Dong, Y., Liao, W. and Zhao, X. S., “Micro-array detection system for gene expression products based on surface plasmon resonance imaging”, Sensors and Actuators B 91 133–137, 2003.

    MAX 7000 Programmable Logic Device Family Data Sheet.

    http://www.altera.com/literature/lit-m7k.jsp

    http://www.meadowlark.com/catalog/LiquidCrystals/liqcrys4.htm.

    洪文明,陸懋宏,“白光相移干涉術之三維表面量測”,交通大學光電所碩士論文,2002

    趙慧洁,外差干涉儀頻率混疊誤差分析,計量學報,Vol. 20, No.3, July 1999.

    吳錦源,Eiolf Vikhagen,李世光 “影像是全像干涉術於微機電元件振動量測運用”,光訊,pp.20-23,2003.

    許正治,“使用外差干涉儀測量光學常數之研究”,交通大學光電所博士論文,2003

    下載圖示 校內:2008-07-15公開
    校外:2008-07-15公開
    QR CODE