| 研究生: |
陳星嶧 Chen, Hsing-Yi |
|---|---|
| 論文名稱: |
含邊界滑移及流變效應之衝擊點接觸塑彈性液動潤滑分析 Analysis of Impact Plasto-Elastohydrodynamic Lubrication in Point Contact Problems - Consideration of Effects of Navier Slip and Flow Rheology |
| 指導教授: |
李旺龍
Li, Wang-Long 張怡玲 Chang, I-Ling |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 衝擊塑彈液動潤滑 、線性硬化模型 、奈維爾滑移 、非牛頓流體 |
| 外文關鍵詞: | impact plasto-elastohydrodynamic lubrication, linear hardening model, Navier slip, non-Newtonian fluid |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
衝擊彈液動潤滑(impact-EHL)對於相互碰撞物體的壽命與性能分析至關重要,其應用範疇廣泛,除衝壓模具、齒輪、凸輪外,亦可進一步涵蓋表面硬化(珠擊)處理之衝擊行為研究,這些情境皆存在局部瞬間的法向衝擊。然而,傳統彈性液動潤滑理論缺乏對更實際情況的考量,例如同時考慮基材塑性硬化行為、流體之流變行為及邊界滑移效應等。因此,有必要將上述影響一併納入考量,以更精確地預測衝擊潤滑行為及其對相互接觸物體動態響應的影響。
為解決上述挑戰,本研究同時建立修正暫態雷諾方程式(涵蓋奈維爾滑移邊界與流變效應)、潤滑油膜厚度方程式、剛性球運動方程式,並結合基材彈塑性變形理論,以更全面分析衝擊塑彈液動潤滑問題(impact-PEHL)。分析結果顯示,傳統 impact-EHL 模型往往高估油膜的中心壓力、最小油膜厚度及衝擊負載,卻低估中心油膜厚度及最小油膜厚度發生位置。
研究結果更進一步指出,滑移長度增加或流動指數降低導致中心膜厚減小,主因在於潤滑油流動性提高、剪切阻力降低所致。而對於剪切增稠流體(n>1, shear thickening fluid),滑移效應會削弱增稠行為,使油膜厚度趨近於無滑移牛頓流體之結果。由於衝擊過程中系統需維持力平衡狀態,滑移效應對整體壓力分佈的影響相對有限。此外,隨著流動指數的增加,中心壓力與油膜厚度均會增加,剛球的回彈速度與衝擊負載峰值則會下降;而當基材之切線模數增加時,回彈速度與衝擊負載將會提升,同時塑性應變與永久變形量則會減小。
Impact plasto-elastohydrodynamic lubrication (impact-PEHL) is vital for predicting the durability and performance of components like stamping dies, gears, cams, and surface treatments such as shot peening, all of which involve localized impacts. Conventional elastohydrodynamic lubrication (EHL) models often neglect substrate plasticity, fluid rheology, and boundary slip, leading to unrealistic predictions. Consequently, the present study develops a novel model by coupling a modified transient Reynolds equation—incorporating Navier slip boundary conditions and non-Newtonian rheology—with the motion equation of a rigid ball and substrate plastic deformation theories, including both elastic-perfectly plastic and linear hardening models. It is found that traditional impact-EHL models tend to overestimate the central pressure, impact load, and minimum film thickness while underestimating the central film thickness and the location of minimum film thickness. By contrast, the proposed impact-PEHL model provides predictions that are more consistent with actual impact-lubricated contact behavior. Parametric analysis indicates that increased slip length or a lower flow index reduces central film thickness by enhancing lubricant mobility. For shear-thickening fluids (n>1), slip weakens their thickening effects, causing the lubricant behavior to approach that of a Newtonian fluid. While slip has a minimal effect on overall pressure due to force balance, it significantly influences local substrate deformation. Furthermore, a higher flow index leads to increased central pressure and film thickness but results in lower rebound speed and a reduced maximum impact load. Conversely, a greater tangential modulus of the substrate enhances rebound velocity and impact load while simultaneously reducing the magnitude of plastic strain and permanent deformation.
[1] Liu, H., Mao, K., Zhu, C., Chen, S., Xu, X., and Liu, M., “Spur Gear Lubrication Analysis With Dynamic Loads,” Tribol. Trans., vol. 56, no. 1, pp. 41–48, 2013.
[2] Liu, J., and Yoshihiro, M., “Analysis of Oil-Lubricated Herringbone Grooved Journal Bearing With Trapezoidal Cross-Section, Using a Spectral Finite Difference Method,” J. Hydrodyn., vol. 22, no. 1, pp. 397–401, 2010.
[3] Maleki, E., Bagherifard, S., Unal, O., Bandini, M., Farrahi, G.H., and Guagliano, M., “Introducing Gradient Severe Shot Peening As a Novel Mechanical Surface Treatment,” Sci. Rep., vol. 11, no. 1, pp. 1–10, 2021.
[4] Thornton, C., “Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres,” ASME J. Appl. Mech., vol. 64, no. 2, pp. 383–386, 1997.
[5] Wu, C.Y., Li, L.Y., and Thornton, C., “Energy Dissipation During Normal Impact of Elastic and Elastic-Plastic Spheres,” Int. J. Impact Eng., vol. 32, no. 1, pp. 593–604, 2006.
[6] Hirai, N., Tosha, K., and Rouhaud, E., “Finite Element Analysis of Shot Peening—On the Form of a Single Dent,” Proc. 9th Int. Conf. Shot Peening, Paris, 2005.
[7] Ghaednia, H., Marghitu, D.B., and Jackson, R.L., “Predicting the Permanent Deformation After the Impact of a Rod With a Flat Surface,” ASME J. Tribol., vol. 137, no. 1, pp. 1–8, 2014.
[8] Jebelisinaki, F., Boettcher, R., van Wachem, B.V., and Müller, P., “Impact of Dominant Elastic to Elastic-Plastic Millimeter-Sized Metal Spheres With Glass Plates,” Powder Technol., vol. 356, pp. 208–221, 2019.
[9] Reynolds, O., “On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil,” Philos. Trans. R. Soc. Lond., vol. 177, pp. 157–234, 1886.
[10] Dowson, D., and Higginson, G.R., Elastohydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication, Pergamon Press, New York, 1966.
[11] Dowson, D., “Elastohydrodynamic and Micro-Elastohydrodynamic Lubrication,” Wear, vol. 190, no. 2, pp. 125–138, 1995.
[12] Jin, Z.M., and Dowson, D., “Elastohydrodynamic Lubrication in Biological Systems,” Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol., vol. 219, no. 5, pp. 367–380, 2005.
[13] Nguyen, L. T. P., and Li, W. L., “Impact Elastohydrodynamic Lubrication Analysis of Transversely Isotropic Materials in Point Contact,” ASME J. Tribol., 46(2), p. 024102, 2024.
[14] Habchi, W., Eyheramendy, D., Vergne, P., and Morales-Espejel, G., "A Full-system Approach of the Elastohydrodynamic Line/Point Contact Problem," ASME J. Tribol., 130(2), 021501, 2008.
[15] Habchi, W., and Issa, J., "An Exact and General Model Order Reduction Technique for the Finite Element Solution of Elastohydrodynamic Lubrication Problems," ASME J. Tribol.,139(5), 051501, 2017.
[16] Fryza, J., Sperka, P., Kaneta, M., Krupka, I., and Hartl, M., "Effects of Lubricant Rheology and Impact Velocity on EHL Film Thickness at Pure Squeeze Action," Tribol. Int., 106, pp. 1–9, 2017.
[17] Prajapati, D.K., Ahmad, D., Katiyar, J.K., Prakash, C., and Ajaj, R.M., "A Numerical Study on the Impact of Lubricant Rheology and Surface Topography on Heavily Loaded Non-conformal Contacts," Surf. Topogr.: Metrol. Prop., 11(3), 035006, 2023.
[18] Kumar, P., and Khonsari, M. M., “On the Role of Lubricant Rheology and Piezo-viscous Properties in Line and Point Contact EHL,” Tribol. Int., 42, pp. 1522-1530, 2009.
[19] Fang, J.B., Wen, X.L., Bai, P.P., Li, X.S., Chen, W.Q., Hou, X., Wen, C.W., Meng, Y.G , Ma, L.R., and Tian, Y., “Post-impact Squeeze-out Behavior of Lubricants with Different Pressure-dependent Rheological Properties,” Tribol. Int., 187, 108695, 2023.
[20] Christensen, H., “Elastohydrodynamic Theory of Spherical Bodies in Normal Approach,” ASME J. Tribol., 92(1), pp. 145-153, 1970.
[21] Yang, P., and Wen, S., “Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction, Part 1: Theory and Dynamic Load Results,” Wear,142(1), pp.1-16, 1991.
[22] Yang, P., and Wen, S., “Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction, Part 2: Constant Velocity and Constant Load Results,” Wear, 142(1), pp. 17-30, 1991.
[23] Chu, H.M., Li, W.L., Chang, Y.P., and Huang, H.C.,”Effects of Couple Stress on Elastohydrodynamic Lubrication at Impact Loading,” ASME J. Tribol., 130(1), 011010, 2008.
[24] Chu, L.M., Lai, J.Y., Chien, C.H., and Li, W.L.,”Effects of Surface Forces on Pure Squeeze Thin Film EHL Motion of Circular Contacts,” Tribol. Int., 43(3), pp. 523-531, 2010.
[25] Chu, L.M., Yu, C.C., Chen, Q.D., and Li, W.L.,”Elastohydrodynamic Lubrication Analysis of Pure Squeeze Motion on an Elastic Coating/Elastic Substrate System,” ASME J. Tribol., 137(1), 011503, 2015.
[26] Venner, C.H., Wang, J., and Lubrecht, A.A. “Central Film Thickness in EHL Point Contacts Under Pure Impact Revisited,” Tribol. Int., 100, pp. 1-6, 2016.
[27] Lubrecht, A.A., Biboulet, N., and Venner, C.H., “Boundary Layers: Unifying the Impact and Rolling EHL Point Contacts,” Tribol. Int., 126, pp. 186-191, 2018.
[28] Oliver, D.R., “Load Enhancement Effects Due to Polymer Thickening a Short Model Journal Bearings,” J. Non-Newtonian Fluid Mech., 30, pp. 185-196, 1988.
[29] Spikes, H.A., “The Behavior of Lubricants in Contacts: Current Understanding and Future Possibilities,” Proc. Inst. Mech. Eng., 208(1), pp. 3-15, 1994.
[30] Elkouh, A.F., Nigro, N.J., and Liou, Y.S., “Non-Newtonian Squeeze Film between Two Plane Annuli,” ASME J. Tribol., 104(2), pp. 275–278, 1982.
[31] Yang, P., and Wen, S., “A Generalized Reynolds Equation for non-Newtonian Thermal Elastohydrodynamic Lubrication,” ASME J. Tribol., 112(4), pp. 631-636, 1990.
[32] Chu, H.M., Li, W.L., and Chen, M.D., “Elastohydrodynamic Lubrication of Circular Contacts at Pure Squeeze Motion with non-Newtonian Lubricants,“ Tribol. Int., 39(9), pp. 897-905, 2006.
[33] Chu, H.M., Chen, J.L., Hsu, H.C., and Li, W.L., " Elastohydrodynamic Lubrication of Circular Contacts at Impact Loading with Generalized Newtonian Lubricants," Tribol. Lett., 29, pp. 1-9, 2008.
[34] Chu, H.M., Chang, Y.P., and Li, W.L., “Rheological Characteristics for Thin Film Elastohydrodynamic Lubrication with non-Newtonian Lubricants,” J. of Mech., 23(4), pp. 359-366, 2007.
[35] Chu, L. M., Chang, Y. P., and Hsu, H. C., “Effects of non-Newtonian Lubricants and Elastic Coating on Transient Elastohydrodynamic Lubrication at Impact Squeeze Loading,” Adv. Mech. Eng., 11(7),pp. 1-8, 2019.
[36] Niu, R., and Huang, P., “The Influences of Elastic-plastic Deformation of Rough Surfaces on EHL for Line Contacts,” Lubr. Eng., 6(178), pp. 20-23, 2006.
[37] Ren, N., Zhu, D., Chen, W., and Wang, Q., “Plasto- elastohydrodynamic lubrication (PEHL) in Point Contacts,” ASME J. Tribol.,132(3), 031501, 2010.
[38] Ren, N., Zhu, D., and Wang, Q., “Three-dimensional Plasto- elastohydrodynamic Lubrication (PEHL) for Surfaces with Irregularities,” ASME J. Tribol., 133(3), 031502, 2011.
[39] He, T., Ren, N., Zhu D., and Wang, J., “Plasto-Elastohydrodynamic Lubrication in Point Contacts for Surfaces With Three-Dimensional Sinusoidal Waviness and Real Machined Roughness,” ASME J. Tribol., 136(3),031504, 2014.
[40] He, T., Wang, J., Wang, Z., and Zhu, D., “Simulation of Plasto- elastohydrodynamic Lubrication in Line contacts of Infinite and Finite Length,” ASME J. Tribol., 137(4), 041505, 2015.
[41] He, T., Zhu, D., and Wang, J., “Simulation of Plasto- elastohydrodynamic Lubrication in a Rolling Contact,” ASME J. Tribol., 138(3), 031503, 2016.
[42] Zhou, Y., Zhu, C.C., Liu, H.J., and Song, H.L., "Investigation of Contact Performance of Case-hardened Gears Under Plasto-elastohydrodynamic Lubrication," Tribol. Lett., 67, pp. 1-15, 2019.
[43] Zheng, Y., Wang, C.Q., Pu, C., Gong, J.Y., and Meng, F.M., "Plasto‐elastohydrodynamic Lubrication Performance of Greased Ellipsoid Contact," Lubr. Sci., 33(4), pp. 171-187, 2021.
[44] Bai, X., Dong, Q., Zheng, H., and Zhou, K.,"Plasto- elastohydrodynamic lubrication of Heterogeneous Materials in Impact Motion," Int. J. Mech. Sci., 236, 107762, 2022.
[45] Chen, H.Y, and Li, W.L., “On the Study of Impact Plasto-Elastohydrodynamic Lubrication of Point Contact Problems Lubricated With Non-Newtonian Lubricant,” ASME J. Tribol., 147(3), 034101, 2025.
[46] Cottin-Bizonne, C., Jurine, S., Baudry, J., Crassous, J., Restagno, F., and Charlaix, E., “Nanorheology: an Investigation of the Boundary Condition at Hydrophobic and Hydrophilic Interfaces,” Eur. Phys. J. E. , 9, pp. 47-53, 2002.
[47] Zhu,Y. and Granick, S., “Apparent Slip of Newtonian Fluids Past Adsorbed Polymer Layers,”Macromolecules, 36, pp. 4658–4663, 2002.
[48] Craig, V. S. J., Neto, C., and Williams, D. R. M., “Shear-Dependent Boundary Slip in an Aqueous Newtonian Fluid,” Phys. Rev. Lett., 87(5), pp. 054504, 2001.
[49] Zhu, Y., and Granick, S., “Rate-Dependent Slip of Newtonian Liquids at Smooth Surfaces,” Phys. Rev. Lett., 87(9), pp. 96105, 2001.
[50] Fu, Z., Guo, F., and Wong, P. L., “Non-Classical Elastohydrodynamic Lubricating Film Shape Under Large Slide-Roll Ratios,” Tribol. Lett., 27(2), pp. 211-219, 2007.
[51] Kaneta, M., Nishikawa, H., and Kameishi, K., “Observation of Wall Slip in Elastohydrodynamic Lubrication,” ASME J. Tribol., 112(3), pp. 447-452, 1990.
[52] Watanabe, K., Udagawa, Y., and Udagawa, H., “Drag Reduction of Newtonian Fluid in a Circular Pipe With a Highly Water-Repellent Wall,” J. Fluid Mech., 381, pp. 225-238, 1999.
[53] Neto, C., Evans, D., Bonaccurso, E., Butt, H., and Craig, V. S. J., “Boundary Slip in Newtonian Liquids: A Review of Experimental Studies,” Rep. Prog. Phys., 68(12), pp. 2859-2897, 2005.
[54] Ponjavic, A., Chennaoui, M., and Wong, J. S. S., “Through-Thickness Velocity Profile Measurements in an Elastohydrodynamic Contact,” Tribol. Lett., 50(2), pp. 261-277, 2013.
[55] Kaneta, M., and Nishikawa, H., “The Effects of a Transversely Oriented Bump on Point Contact EHL Films in Reciprocating Motion With a Short Length of Stroke ,” Tribol. Series, 36, pp. 185-192, 1999.
[56] Guo, F., Li, X. M., and Wong, P. L., “A Novel Approach to Measures Slip-Length of Thin Lubricant Films Under High Pressures,” Tribol. Int., 46(1), pp. 22-29, 2012.
[57] Ponjavic, A., and Wong, J. S. S., “The Effect of Boundary Slip on Elastohydrodynamic Lubrication,” RSC Advances, 4(40), pp. 20821–20829, 2014.
[58] Lee, R. T., and Hamrock, B. J., “A Circular Non-Newtonian Fluid Model: Part I–Used in Elastohydrodynamic Lubrication,” ASME J. Tribol., 112, pp. 486-496, 1990.
[59] Ehret, P., Dowson, D., and Taylor, C. M., “On Lubricant Transport Conditions in Elastohydrodynamic Conjunctions,” Proc. R. Soc. London, Ser. A, 454, pp. 763-787, 1998.
[60] Vinogradova, O. I., “Slippage of Water Over Hydrophobic Surfaces,” Int. J. Miner. Process., 56(1), pp. 31-60, 1999.
[61] Ehret, P., Dowson, D.,and Taylor, C.M., “Transient EHL Solutions With Interfacial Slip,” ASME J. Tribol., 121(4), pp. 703-710, 1999.
[62] Ståhl, J., and Jacobson, B.O., “A Lubricant Model Considering Wall-Slip in EHL Line Contacts,” ASME J. Tribol., 125(3), pp. 523-532, 2003.
[63] Li, W.L., “On the Squeeze Flow Between Two Rigid Spheres With Partially Wetted Surfaces,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 224(2), pp. 195-201, 2009.
[64] Chu, L.M., Lin, J.R., Li, W.L., and Lu, J.M., “A Model for Line-Contact EHL Problems—Consideration of Effects of Navier-Slip and Flow rheology,” ASME J. Tribol., 134(3), 031502, 2012.
[65] Jao, H.C., Chang, K.M., Chu, L.M., and Li, W.L., “A Modified Average Reynolds Equation for Rough Bearings With Anisotropic Slip,” ASME J. Tribol., 138(1), 011702, 2016.
[66] Chen, Q.D., Jao, H.C, Chu, L.M., and Li, W.L., “Effects of Anisotropic Slip on the Elastohydrodynamic Lubrication of Circular Contacts,” ASME J. Tribol., 138(3), 031502, 2016.
[67] Zhang, Y., Wang, W., Liang, H., and Zhao, Z., “Layered Oil Slip Investigation of Film Thickness Behaviours at High Speed Conditions,” Tribol. Int., 131, pp. 137-147, 2018.
[68] Zhang, Y., Wang, W., Liang, H., and Zhao, Z., “Slip Status in Lubricated Point-Contact Based on Layered Oil Slip Lubrication Model,” Tribol. Int., 144(3), 106104, 2020.
[69] Meng, X., Wang, J., Nishikawa, H., and Nagayama, G., “Effects of Boundary Slips on Thermal Elastohydrodynamic Lubrication Under Pure Rolling and Opposite Sliding Contacts,” Tribol. Int., 155, p. 106801, 2021.
[70] Van Emden, E., Venner, C.H., and Morales-Espejel, G.E., “Aspects of Flow and Cavitation Around an EHL Contact,” Tribol. Int., 95, pp. 435-448, 2016.
[71] Zhao, Y., Wong, P. L., and Guo, L.,” Linear Complementarity Solution of 2D Boundary Slip EHL Contact, “Tribol. Int., 145, 106178, 2020.
[72] Zhao, Y., Wong, P. L.,” Influences of Boundary Slip Coating on Elastohydrodynamically Lubricated Contacts, “Tribol. Lett., 70, 54, 2022.
[73] Arif, M., Kango, S., and Shukla, D. K.,” Analysis of Textured Journal Bearing With Slip Boundary Condition and Pseudoplastic Lubricants, “Int. J. Mech. Sci., 228, 107458, 2022.
[74] Hamrock, B. J., Schmid, S. R., and Jacobson, B. O., “Fundamentals of fluid film lubrication,” Marcel Dekker Inc., New York., Chap 7, Eq.(7.66) , 2004.
[75] Johnson, K. L., Contact mechanics, Cambridge university press, 1987.
[76] Bird, R.B., and Stewart, W.E., Transport Phenomena, Wiley, New York, 1960.
[77] Dowson, D., and Wang, D., “Impact Elastohydrodynamics,” Tribology Series, vol. 30, Elsevier, New York, pp. 565-582, 1995
[78] Roelands, C., Vlugter, J., and Waterman, H., “The Viscosity-Temperature-Pressure Relationship of Lubricating Lubricants and Its Correlation With Chemical Constitution,” ASME J. Basic Eng., 85(4), pp. 601-607, 1963.
[79] Venner, C.H., and Bos, J., “Effects of Lubricant Compressibility on the Film Thickness in EHL Line and Circular Contacts,” Wear, 173(1-2), pp. 151-165, 1994.
[80] Dong, Q., and Zhou, K., “Numerical Modeling of Elastohydrodynamic Lubrication in Point or Line Contact for Heterogeneous Elasto-plastic Materials,” Mech. Adv. Mater. Struct., 24(15), pp. 1300-1308, 2017.
[81] Bai, X.,” Interfacial Mechanics Investigation of Transmission Components under non-Newtonian Lubrication Conditions,” Ph.D. dissertation, Nanyang Technological University, Singapore, 2023.