簡易檢索 / 詳目顯示

研究生: 倪芳紋
Madhavan, Niveditha
論文名稱: 在上行多細胞系統基於適應性克羅內克積因子分配之類比波束成形設計
Analog Beamformer Design based on Adaptive Kronecker Factor Allocation for Multi-Cell Uplink System
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 60
中文關鍵詞: 因子分配干擾消除分支定界總傳輸率最大化協同多點聯合接收
外文關鍵詞: Factor allocation, Interference cancellation, Branch and bound, Sum rate maximization, Co-Ordinated Multipoint, Joint Reception
相關次數: 點閱:37下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 毫米波巨量多重輸出多重輸入系統的混和式波束成形是一項可滿足高速無線通訊的潛力技術,然而,類比波束成形在實現上須滿足波束係數振幅為常數一的限制,增加了設計困難度,為解決此問題,前人提出基於克羅克內積因子的類比波束設計,然而頻譜效益與克羅內積因子分配給不同用戶的次序有關,且受限於克羅內積因子的數量,類比波束成形僅能消除部份的多用戶干擾,此問題在多細胞系統更形嚴重。在本論文中,我們考慮上行多細胞多用戶系統,針對混合波束成形中的類比波束成形,定義最大化總和傳輸速率的問題,我們提出分支定界法尋求近似最佳解,並將問題延伸至多點協調接收的情境。在論文中對所提方法進行複雜度分析與模擬效能評估,數值結果顯示確認所提方法的收斂性以及對頻譜效益的提升。

    Hybrid beamforming in millimeter wave Massive Multi-Input Multi-Output (MIMO) is a promising technique for fulfilling the need of high-rate wireless communications. To address the issue in hybrid beamforming, Kronecker decomposition based design of analog beamformer has been proposed. However, the achieved spectral efficiency by the existing approach depends on the order of Kronecker factors assigned to different users. Besides, the limited number of Kronecker factors can only mitigate a part of multi-user interference and the problem is move severe in the multi-cell scenario. In this thesis, we consider an uplink multi-cell multi-user network and formulate the ana-log beamformer design in hybrid beamforming as a sum rate maximization problem. A branch and bound algorithm that can deliver near-optimal solutions is proposed for interference mitigation in single user and multi user scenarios. Further we extend the consideration to multi-cell cooperation with Joint Reception (JR). Complexity analy-sis and simulation results are provided to evaluate the performance of the proposed methods for different channel realizations by varying the channel gain and pathloss components. Numerical results demonstrate the convergence of the proposed algo-rithm and the improved spectral efficiency obtained in a fewer iterations.

    Chinese Abstract ii Abstract iii Acknowledgement v Table of Contents vi List of Figures viii List of Tables ix List of Symbols x List of Acronyms xii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Related Work 6 2.1 CSI acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Hybrid beamforming design . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 ICI co-ordination techniques . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Handling of Co-ordinated Multipoint . . . . . . . . . . . . . . . . . . . 10 3 System Model And Problem Formulation 11 3.1 Multi-cell scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Channel model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.2 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Estimation of channel parameters . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Angle estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Gain estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Hybrid beamforming architecture . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Analog beamforming . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Digital beamforming . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.1 Problem hardness . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.2 CVX Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.3 Continuous relaxation . . . . . . . . . . . . . . . . . . . . . . . 22 4 Proposed Methods 23 4.1 Adaptive Kronecker factor allocation . . . . . . . . . . . . . . . . . . . 23 4.1.1 Factor allocation for interference cancellation . . . . . . . . . . 24 4.1.2 Factor allocation for signal enhancement . . . . . . . . . . . . . 25 4.2 Sequential factor assignment . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 Branch and bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3.1 Case study for branch and bound . . . . . . . . . . . . . . . . . 26 4.3.2 Tree structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 Single user scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4.1 Bound computation for single user . . . . . . . . . . . . . . . . 29 4.4.2 Branch and bound algorithm for single user . . . . . . . . . . . 31 4.5 Multi-user scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5.1 Bound computation for multi-user . . . . . . . . . . . . . . . . 33 4.5.2 Case study for the multi-user scenario . . . . . . . . . . . . . . 34 4.5.3 Branch and bound algorithm for multi-user . . . . . . . . . . . 35 4.6 Multi-user scenario with JR . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6.1 CoMP Type-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.6.2 CoMP Type-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Results and Discussions 40 5.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.1 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2.1 CSI estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2.2 Spectral efficiency against the interferers . . . . . . . . . . . . . 44 5.2.3 Impact of number of antennas . . . . . . . . . . . . . . . . . . . 47 5.2.4 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.5 Impact of Transmit Power . . . . . . . . . . . . . . . . . . . . . 49 5.2.6 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.7 Multi-user scenario . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2.8 CoMP scenario with JR . . . . . . . . . . . . . . . . . . . . . . 54 6 Conclusion and Future Work 56 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 References 58

    [1] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave mimo systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436–453, 2016.

    [2] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, “Hybrid beamforming for massive mimo: A survey,” IEEE Communications Mag-azine, vol. 55, no. 9, pp. 134–141, 2017.

    [3] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986.

    [4] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831–846, 2014.

    [5] A. Adhikary, J. Nam, J. Ahn, and G. Caire, “Joint spatial division and multiplex-ing—the large-scale array regime,” IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6441–6463, 2013.

    [6] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave mimo systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499–1513, 2014.

    [7] J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace mimo for millimeter-wave communications: System architecture, modeling, analysis, and measurements,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 7, pp. 3814–3827, 2013.

    [8] R. Rajashekar and L. Hanzo, “Iterative matrix decomposition aided block diago-nalization for mm-wave multiuser mimo systems,” IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1372–1384, 2017.

    [9] G. Zhu and K. Huang, “Analog spatial cancellation for tackling the near-far prob-lem in wirelessly powered communications,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3566–3576, 2016.

    [10] G. Zhu, K. Huang, V. K. N. Lau, B. Xia, X. Li, and S. Zhang, “Hybrid interference cancellation in millimeter-wave mimo systems,” in Proc. 2016 IEEE International Conference on Communication Systems (ICCS), 2016, pp. 1–6.

    [11] A. S. Hamza, S. S. Khalifa, H. S. Hamza, and K. Elsayed, “A survey on inter-cell interference coordination techniques in ofdma-based cellular networks,” IEEE Communications Surveys Tutorials, vol. 15, no. 4, pp. 1642–1670, 2013.

    [12] S. Bassoy, H. Farooq, M. A. Imran, and A. Imran, “Coordinated multi-point clustering schemes: A survey,” IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 743–764, 2017.

    [13] A. Adhikary and G. Caire, “Jsdm and multi-cell networks: Handling inter-cell interference through long-term antenna statistics,” in 2014 48th Asilomar Confer-ence on Signals, Systems and Computers, 2014, pp. 649–655.

    [14] A. Papadogiannis, D. Gesbert, and E. Hardouin, “A dynamic clustering approach in wireless networks with multi-cell cooperative processing,” in 2008 IEEE Inter-national Conference on Communications, 2008, pp. 4033–4037.

    [15] F. Fernandes, A. Ashikhmin, and T. L. Marzetta, “Inter-cell interference in non-cooperative tdd large scale antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 192–201, 2013.

    [16] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 264–273, 2013.

    [17] F. Al-Ogaili and R. M. Shubair, “Millimeter-wave mobile communications for 5g: Challenges and opportunities,” in Proc. 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 2016, pp. 1003–1004.

    [18] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communica-tions for 5g cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.

    [19] G. Zhu, K. Huang, V. K. N. Lau, B. Xia, X. Li, and S. Zhang, “Hybrid beam-forming via the kronecker decomposition for the millimeter-wave massive mimo systems,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 2097–2114, 2017.

    [20] K. Nguyen, Q. Vu, M. Juntti, and L. Tran, “Globally optimal beamforming de-sign for downlink comp transmission with limited backhaul capacity,” in Proc. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 3649–3653.

    [21] S. K. Joshi, P. C. Weeraddana, M. Codreanu, and M. Latva-aho, “Weighted sum-rate maximization for miso downlink cellular networks via branch and bound,” IEEE Transactions on Signal Processing, vol. 60, no. 4, pp. 2090–2095, 2012.

    [22] J. Israel, A. Fischer, J. Martinovic, E. A. Jorswieck, and M. Mesyagutov, “Discrete receive beamforming,” IEEE Signal Processing Letters, vol. 22, no. 7, pp. 958–962, 2015.

    [23] Y. Lin, T. Chiu, and Y. T. Su, “Optimal and near-optimal resource allocation algorithms for ofdma networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 8, pp. 4066–4077, 2009.

    [24] J. G. Andrews, T. Bai, M. N. Kulkarni, A. Alkhateeb, A. K. Gupta, and R. W. Heath, “Modeling and analyzing millimeter wave cellular systems,” IEEE Trans-actions on Communications, vol. 65, no. 1, pp. 403–430, 2017.

    [25] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.901, 01 2018, version 14.0.0. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/ 38901.htm.

    下載圖示 校內:2024-04-06公開
    校外:2024-04-06公開
    QR CODE