簡易檢索 / 詳目顯示

研究生: 林祐生
Lin, Yu-Sheng
論文名稱: 利用電壓-電容法量測相鄰材料間之接著強度與密封性
Determination of The Adhesion and Hermiticity Between Adjacent Materials via Capacitance-Voltage Technique
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 103
中文關鍵詞: 等效電路電壓電容法環氧樹脂硬化
外文關鍵詞: C-V, curing, equivalent circuit, epoxy
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於量測生物物質是在一個多水潮溼的環境中,因此在發展應用於生物體內之感測器時,封裝是一個相當重要的角色。本實驗係利用電壓電容法(Capacitance Voltage technique, C-V)來量測相鄰材料間之接著強度與密封性。我們所量測的結構是依據分子模版微感測器的架構設計,基材的部分是有二氧化矽與氮化矽之P型半導體,其中二氧化矽是利用熱氧化所成長,氮化矽為電漿輔助化學氣相沈積(PECVD)所成長。封裝材料的部分選擇環氧樹脂做為封裝材料,並且以旋轉塗佈的方式塗佈在基材上。此外,我們也利用濺鍍的方式在介電層上方鍍上鋁、金、白金等不同金屬,來觀測不同材料之間的接著強度與密封性。為了符合感測器的型式,我們在環氧樹脂的上方開一個此使為感測的部分。我們可以透過電容的變化來了解系統是否發生了滲透或是吸收的現象。本實驗除了C-V的量測之外,還有其他不同的材料分析如拉曼光譜儀(Raman)、掃描式電子顯微鏡(SEM)以及膠帶測試(ASTM 3359 Tape Test)等。此外,我們也提出了等效電路模型來描述環氧樹脂的電容變化。

    To develop a micro-sensing chip for in vitro use, packaging is extremely critical in that there are areas which must be exposed to a fluid for purpose of sensing. One of the micro-sensing chips that is under our investigation is a molecular imprinting micro-sensing chip. In this type of chips, a well-like open sitting on top of a field effect transistor (FET) is used for the sensing. The bottom of the well-like open is a dielectric layer that is exposed to a KCl electrolyte; while the wall is a polymeric material. Therefore, the penetration or absorption of the liquid through the interface between the dielectric and the polymeric material has to be prevented. In this study, we have examined such an issue through the use of a capacitance-voltage (C-V) technique. Using the C-V techniques, the penetration or absorption of the liquid can be monitored by observing the variations in the capacitance. The specimens studied are a three-layer structure consisting of Si, a dielectric, and a polymer (with an open) from the bottom to the top. The dielectric layers investigated include silicon oxide and silicon nitride; while the polymeric material is epoxy. The silicon oxide and silicon nitride layers were prepared using a thermal oxidation method and a chemical vapor deposition (CVD) technique, respectively. The polymer layer was applied by spin coating. Both the thickness of the polymeric materials and the dimensions of the open were varied. Various materials characterizations, including Raman spectroscope, Tape test (ASTM 3359) and scanning electron microscopy (SEM) were performed on the specimens prior to the C-V measurements. Long term C-V measurements, exceeding 3 months, were conducted to allow data acquisitions at different times during the measurements. The results are explained using a equivalent circuit model.

    摘要 I Abstract II 總目錄 III 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1前言 1 1-2研究目的 3 第二章 文獻回顧 4 2-1 ISFET發展與應用 4 2-1-1簡介 4 2-1-2應用 6 2-2 分子模板微感測器(MIMSC)介紹 7 2-3電子封裝介紹 8 2-3-1簡介 8 2-3-2封裝層級 9 2-3-3封裝類別 10 2-4 Adhesion in MIMSC 11 2-5 Adhesion相關介紹 12 2-5-1前言 12 2-5-2表面張力 14 2-5-3潤溼方程式 14 2-5-4 Adhesion的機制 16 2-6 表面修飾 18 2-6-1 電漿修飾 18 2-6-2 化學修飾 19 2-6-3機械蝕刻 19 2-7 量測技術 20 2-7-1 Capacity-Valtage 20 2-7-2 標準測試方法 25 第三章 實驗方法 26 3-1實驗流程 26 3-2 MIMSC模擬架構介紹 26 3-2 MIMSC模擬架構介紹 27 3-3 MIMSC模擬元件製程介紹 27 3-3-1晶片清絜步驟 27 3-3-2成長二氧化矽製程 29 3-3-3微影製程 30 3-3-4濺鍍金屬層製程 34 3-3-5蒸鍍金屬層製程 35 3-3-6蝕刻 36 3-3-7封裝製程 36 3-4試片分析 36 3-4-1掃描式電子顯微鏡(SEM)分析 36 3-4-2 拉曼光譜(Raman)分析 38 3-4-2膠帶試驗(Tape-test) 38 3-4-3電壓-電容法(Capacitance-Voltage technique,C-V technique) 38 3-4-4自行設計之測漏電路 38 第四章 結果與討論 40 4-1環氧樹脂特性分析 40 4-1-1 拉曼光譜分析(Raman analysis) 40 4-1-2 掃描電子顯微鏡分析(SEM analysis) 40 4-1-3環氧樹脂之電容分析 40 4-2接觸角量測 46 4-3膠帶測試對接著強度之評估 49 4-3-1 Epoxy / Dielectric materials試片分析 49 4-3-2 Epoxy / Metals / Dielectric materials 試片分析 55 4-4電壓-電容法(C-V method)對接著強度之評估 61 4-4-1 Dielectric materials / Si試片之C-V分析 61 4-4-2 Epoxy / Dielectric materials試片分析 67 4-4-3環氧樹脂(Epoxy)與金屬 82 4-5元件模擬 95 第五章 結論 98 第六章 未來展望 100 第七章 參考文獻 101

    S. Middelhoek. Celebration of the tenth transducers conference: the past, present and future of transducer research and development. Sen. Actuators, 82 (2000) 2-23.
    K.D. Wise, J.B. Angell, A. Starr, An integrated-circuit approach to extracellular microelectrodes, IEEE Trans. Biomed. Eng., BME-17 (3) (1970) 238.
    P.Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Trans. Biomed. Eng., BME-17 (1970) 70-71.
    P.Bergveld, Development, operation and application of the ion sensitive field effect transistor as a tool for electrophysiology, IEEE Trans. Biomed. ENG., BME-19 (1972) 342-351.
    T. Matsuo, K.D Wise, An integrated field effect electrode for biopotential recording, IEEE Trans. Biomed. Eng., BME-21 (1974) 485-487.
    W.H Baumann et al., Microelectronic sensor system for microphysiological application of living cells, Sens. Actuators B, 55 (1999) 77-89.
    M. Lehmann et al., Non-invasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications, Biosens. Bioelectron, 15 (2000) 117-124.
    I.Robins, Sensing developments using ISFETS, Int. LABMATE, 18 (1993) 45-46.
    P. Arquint, M. Koudelka-Hep, B.H. Van der Schoot, P.Van der Wal, N.F. de Rooij, Micromachined analyzers on a silicon chip, Clin. Chem., 40 (1994) 1805-1809.
    B.H. Van der Schoot, P.Bergveld, An ISFET-based microlitretitrator: integration of a chemical sensor-actuator system, Sens. Actuators, 8 (1985) 11-22.
    W. Olthuis, B.H. Van der Schoot, F. Chavez, P. Bergveld, A dipstick sensor for coulometric acid-base titrations, Sens. Actuators, 17 (1989) 279-284.
    B.H. Van der Schoot, P. Bergveld, Coulometric sensors, the application of a sensor-actuator system for long term stability in chemical sensing, Sens. Actuators, 13 (1988) 251-262.
    W. Olthuis, J.G. Bomer, P. Bergveld, M. Bos, W.E. Van der Linden, Irdium oxide as actuator material for the ISFET-based sensor-actuator system, Sens. Actuators B, 5 (1992) 47-52.
    B.H. Van der Schoot, P. Bergveld, ISFET based enzyme sensors, Biosensors, 3 (1988) 161-186.
    B.K. Sohn, B.W. Cho, C.S. Kim, D.H. Kwon, ISFET glucose and sucrose sensors by using platinum electrode and photo-crosslinkable polymers, Sens. Actuators B, 41 (1997) 7-11.
    D. Kreiz, O. Ramstrom, K. Mosbach, Molecular Imprinting — new possibilities for sensor technology, Analytical Chemistry News & Features, (1997) 345A-349A
    Charles A. Harper, Electronic packaging and interconnection handbook, McGraw-Hill, New York, 2-16, 1997.
    Dieter K. Schroder, Semiconductor material and device characterization, Wiley, New York, 246-249, 1990.
    A. Bratov, J. Munoz, C. Dominguez, J. Bartroli, Photocurable polymers applied as encapsulating materials for ISFET production, Sens. Actuators B, (1995) 823-825.
    C.Y. Shigue, R.G.S. dos Santos, C.A. Baldan, E. Ruppert-Filho, Monitoring the epoxy curing by the dielectric thermal analysis method, Applied Superconductivity, IEEE Trans.
    14 (2004) 1173 – 1176.
    S.O. Han, L.T. Drzal, Curing characteristics of carboxyl functionalized glucose resin and epoxy resin, European Polymer Journal, 39 (2003) 1377-1384.
    M.A. Escola, C.A. Moina, A.C.N. Gomez, G.O. Ybarra, The determination of the degree of cure in epoxy paints by infrared spectroscopy, Polymer Testing 24 (2005) 572-575.
    M. Younesw, S. Wartewig, D. Lellinger, The curing o epoxy resins as studied by various methods, Polymer, 35 (1994) 5269-5278.
    J.T. Zhang, J.M. Hu, J.Q. Zhang, C.N. Cao, Studies of water transport behavior and impedance model of epoxy-coated metals in NaCl solution by EIS, Prog. Org. Coat., 51 (2004) 145-151.
    M.J. Adamson, Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials, J. Mat. Sci., 15 (1980) 1736-1745.
    F. Bordoni, L. Fasciani, R. De Tommasis, A. Di Giacomo, G. Moccia, Scanning capacitance microscope, an alternative technique to the C-V measurement for the SiO2 characterization, J. Non-Crystalline Solids, 216 (1997) 180-184.
    P. Bouillon, R. Gwoziecki, T. Skotnicki, Universal Impurity Ionization Parameters in MIS C-V freeze out characteristics and direct extraction of surface doping concentration, IEEE Trans. Elec. Dev., 47 (2000) 871-877.
    H. Dib, Z. Benamara, A. Boudissa, B. Zebentout, R. Naoum, F. Raoult, C(V) characterization of metal/polysilicon/oxide/monosilicon structure, Microelectronics Journal, 30 (1999) 679-683.
    R.B.M. Schasfoort, P. Bergveld, R.P.H. Kooyman, J. Greve, The ion-step-induced response of membrane-coated ISFETs: theoretical description and experimental verification, Biosensors & Bioelectronics 6 (1991) 477-489.
    L.K. Meixner, S. Koch, Simulation of ISFET operation based on the site-binding model, Sens. Actuators B, 6 (1992) 315-318.
    D.E. Yates, S. Levine, T.w. Healy, Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans. I, 70 (1974) 1807-1818.
    G.Z. Xiao and M.E.R. Shanahan, Swelling of DGEBA/DDA epoxy resin during hygrothermal ageing, Polymer, 39 (1998) 3253-3260.
    G.Z. Xiao, M.E.R. Shanahan, Water absorption and desorption in an epoxy resin with degradation, J. Poly. Sci., 35 (1997) 2659-2670.
    S.Gazit, Dimensional changes in glass-filled epoxy resin as a result of absorption of atmospheric moisture, J. Appl. Poly. Sci., 22 (1978) 3547-3558.
    R.E.G. van Hal, P. Bergveld, J.F.J. Engbersen, D.N. Reinhoudt, Characterization and testing of polymer-oxide adhesion to improve the packaging reliability of ISFETs, Sens. Actuators B, 23 (1995) 17-26.
    V.B. Miskovic-Stankovic, D.M. Drazic, M.J. Teodorovic, Electrolyte penetration throught epoxy coatings electrodoposited on steel, Corrosion Sci., 37 (1995) 241-252.

    下載圖示 校內:2006-07-22公開
    校外:2008-07-22公開
    QR CODE