| 研究生: |
陳昱勲 Chen, Yu-Hsun |
|---|---|
| 論文名稱: |
利用水熱法將玻璃廢棄物製備成纖維狀矽酸二鈣之研究 Synthesis of Fibrous Dicalcium Silicate from Waste Glass via Hydrothermal Method |
| 指導教授: |
陳偉聖
Chen, Wei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 水熱法 、纖維狀 、矽酸二鈣 、廢玻璃 、貝利特水泥 |
| 外文關鍵詞: | Hydrothermal method, fibrous, dicalcium silicate, waste glass, belite |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
波特蘭水泥作為建築業常用的材料之一,在2016年的全球產量就高達20億噸,波特蘭水泥的生產不僅釋放大量二氧化碳還消耗大量的能源,其二氧化碳排放量占全球人為二氧化碳排放的7%。為因應節能減碳的需求,水泥產業期望能開發低碳、低能耗的建材,因此以矽酸二鈣作為主要礦物相的貝利特水泥逐漸受到重視。與矽酸三鈣作為主要礦物相的波特蘭水泥相比,貝利特水泥具有較低的燒成溫度、較低的水化熱與較高的後期強度等優點。
本實驗使用水熱法將結晶二氧化矽、強化玻璃、容器玻璃與氧化鈣反應合成出纖維狀矽酸二鈣,利用廢棄物當作原料不僅可降低成本還可促進廢棄物的再利用,且纖維狀的晶體還能加強未來應用在水泥或是矽酸鈣板中的機械強度。利用強化玻璃與容器玻璃作為原料,需先經過球磨程序以降低粒徑,在球磨過程中,發現磨球與磨料的比例會影響破碎的效果。由於強化玻璃的硬度比容器玻璃硬,因此在研磨的過程中所需要的球料比較低。
在纖維狀矽酸二鈣的製備過程中,發現影響矽酸二鈣生成最重要的因素是材料本身的結晶性,當利用結晶二氧化矽合成時,樣品的矽酸二鈣占比可達到93%,但利用強化玻璃或是容器玻璃合成時,樣品的矽酸二鈣占比最高只到85%。利用高水固比來合成矽酸二鈣可使反應更趨向均相反應,在特定的情況下能使樣品更容易產生纖維狀晶體。另外,在實驗過程中發現不同的玻璃對於矽酸二鈣的合成也有影響,由於強化玻璃在製造過程中有經過熱處理強化,使其內部產生局部應力場,因此相較於容器玻璃能更有效的與氧化鈣反應形成纖維狀矽酸二鈣。
Portland cement (PC), one of the most widely used materials in the construction industry. The production of PC not only releases large amounts of carbon dioxide but also consumes significant amounts of energy, accounting for 7% of global carbon dioxide emissions. Belite cement (BC), which primarily contains dicalcium silicate as the main mineral phase, has gained more attention. BC offers several advantages, including a lower calcination temperature, lower heat of hydration, and higher long-term strength.
In this study, the fibrous dicalcium silicate was synthesized via hydrothermal method using silica, tempered glass and container glass. Using waste glass as raw material not only reduces production costs but also promotes waste recycling. If we want to use tempered glass and container glass as raw materials, a ball milling process was required to reduce the particle size. In ball milling process, it was observed that the ball-to-material ratio influenced the grinding efficiency. Because tempered glass is harder than container glass, tempered glass required a lower ball-to-material ratio to achieve the optimal grinding efficiency.
In the fibrous dicalcium silicate process, we observed that the crystallinity is the most important factor. When using silica, the phase proportion of dicalcium silicate is up to 93%. However, when using tempered glass and container glass, it is low to 85%. In addition, the type of glass also influences the synthesis of dicalcium silicate. Due to the thermal strengthening process used in the production of tempered glass, which induces stress fields. Thus, the stress field makes tempered glass more reactive with calcium oxide to facilitate the synthesis of dicalcium silicate.
[1] A.M. Gaudin, Principles of mineral dressing, (No Title), (1939).
[2] S.N. Ghosh, P.B. Rao, A. Paul, K. Raina, The chemistry of dicalcium silicate mineral, Journal of Materials Science, 14 (1979) 1554-1566.
[3] 行政院環境保護署, 廢玻璃再生粒料應用於級配粒料基底層之使用手冊, 2022.
[4] J. Villarin, J. Algo, T. Cinco, F. Cruz, R. de Guzman, G. Narisma, F. Hilario, A. Ortiz, F. Siringan, L. Tibig, 2016 Philippine Climate Change Assessment (PhilCCA): The Physical Science Basis, (2016).
[5] O. Edenhofer, Mitigation of Climate Change, Intergovernmental Panel on Climate Change (IPCC), 2015.
[6] C. Shi, A.F. Jiménez, A. Palomo, New cements for the 21st century: The pursuit of an alternative to Portland cement, Cement and concrete research, 41 (2011) 750-763.
[7] A.M. Neville, Properties of concrete, Pitman1973.
[8] K. Pimraksa, S. Hanjitsuwan, P. Chindaprasirt, Synthesis of belite cement from lignite fly ash, Ceramics International, 35 (2009) 2415-2425.
[9] A. Guerrero, S. Goñi, A. Moragues, J.S. Dolado, Microstructure and Mechanical Performance of Belite Cements from High Calcium Coal Fly Ash, Journal of the American Ceramic Society, 88 (2005) 1845-1853.
[10] K. Quillin, Performance of belite–sulfoaluminate cements, Cement and concrete research, 31 (2001) 1341-1349.
[11] H.F. Taylor, Cement chemistry, Thomas Telford London1997.
[12] A. Guerrero, S. Goñi, I. Campillo, A. Moragues, Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters, Environmental science & technology, 38 (2004) 3209-3213.
[13] A. Chatterjee, High belite cements—Present status and future technological options: Part I, Cement and concrete research, 26 (1996) 1213-1225.
[14] A. Guerrero, S. Goñi, A. Macıas, Durability of new fly ash–belite cement mortars in sulfated and chloride medium, Cement and concrete research, 30 (2000) 1231-1238.
[15] The crystal structure of γ-dicalcium silicate, Acta Crystallographica, 18 (1965) 787-795.
[16] M. Bredig, Polymorphism of calcium orthosilicate, Journal of the American Ceramic Society, 33 (1950) 188-192.
[17] A. Cuesta, M.A. Aranda, J. Sanz, Á.G. de la Torre, E.R. Losilla, Mechanism of stabilization of dicalcium silicate solid solution with aluminium, Dalton Transactions, 43 (2014) 2176-2182.
[18] I. Jelenić, A. Bezjak, M. Bujan, Hydration of B2O3-stabilized α′-and β-modifications of dicalcium silicate, Cement and concrete research, 8 (1978) 173-180.
[19] I.M. Pritts, K.E. Daugherty, The effect of stabilizing agents on the hydration rate of β-C2S, Cement and Concrete Research, 6 (1976) 783-795.
[20] A. Cuesta, E.R. Losilla, M.A. Aranda, J. Sanz, A.G. De la Torre, Reactive belite stabilization mechanisms by boron-bearing dopants, Cement and Concrete Research, 42 (2012) 598-606.
[21] G.L. Kalousek, J. Logiudice, V. Dodson, Studies on the Lime‐Rich Crystalline Solid Phases in the System Lime—Silica—Water, Journal of the American Ceramic Society, 37 (1954) 7-13.
[22] H. Ishida, K. Sasaki, T. Mitsuda, Highly Reactive β‐Dicalcium Silicate: I, Hydration Behavior at Room Temperature, Journal of the American Ceramic Society, 75 (2005) 353-358.
[23] Y. Okada, H. Ishida, K. Sasaki, J.F. Young, T. Mitsuda, Characterization of C‐S‐H from Highly Reactive β‐Dicalcium Silicate Prepared from Hillebrandite, Journal of the American Ceramic Society, 77 (1994) 1313-1318.
[24] L. Kacimi, M. Cyr, P. Clastres, Synthesis of alpha'L-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure, J Hazard Mater, 181 (2010) 593-601.
[25] M.o. Environment., 公告應回收廢物品及容器回收量, 2024.
[26] G.C.a.C. Association, 2050 Net Zero Roadmap - One Year On., 2021.
[27] I. Jelenić, A. Bezjak, On the hydration kinetics of α′-and β-modifications of dicalcium silicate, Cement and Concrete Research, 11 (1981) 467-471.
[28] J. Young, H.-S. Tong, Microstructure and strength development of beta-dicalcium silicate pastes with and without admixtures, Cement and Concrete Research, 7 (1977) 627-636.
[29] M. COLLEPARDI, L. MASSIDDA, Hydration of beta dicalcium silicate alone and in the presence of CaCl2 or C2H5OH, Journal of the American Ceramic Society, 56 (1973) 181-183.
[30] M. Vellini, M. Savioli, Energy and environmental analysis of glass container production and recycling, Energy, 34 (2009) 2137-2143.
[31] D. Mathur, R. Gregory, T. Simons, End-of-life management of solar PV panels, (2020).
[32] J. Park, W. Kim, N. Cho, H. Lee, N. Park, An eco-friendly method for reclaimed silicon wafers from a photovoltaic module: from separation to cell fabrication, green chemistry, 18 (2016) 1706-1714.
[33] Y.K. Yi, H.S. Kim, T. Tran, S.K. Hong, M.J. Kim, Recovering valuable metals from recycled photovoltaic modules, Journal of the Air & Waste Management Association, 64 (2014) 797-807.
[34] V. Fiandra, L. Sannino, C. Andreozzi, F. Corcelli, G. Graditi, Silicon photovoltaic modules at end-of-life: Removal of polymeric layers and separation of materials, Waste Management, 87 (2019) 97-107.
[35] J. Park, N. Park, Wet etching processes for recycling crystalline silicon solar cells from end-of-life photovoltaic modules, RSC advances, 4 (2014) 34823-34829.
[36] R. Deng, N.L. Chang, Z. Ouyang, C.M. Chong, A techno-economic review of silicon photovoltaic module recycling, Renewable and Sustainable Energy Reviews, 109 (2019) 532-550.
[37] J.K. Lee, J.S. Lee, Y.S. Ahn, G.H. Kang, H.E. Song, M.G. Kang, Y.H. Kim, C.H. Cho, Simple pretreatment processes for successful reclamation and remanufacturing of crystalline silicon solar cells, Progress in Photovoltaics: Research and Applications, 26 (2018) 179-187.
[38] 工業技術研究院, 循環經濟新亮點,廢液晶面板創新處理.
[39] L.M. Tavares, A review of advanced ball mill modelling, KONA Powder and Particle Journal, 34 (2017) 106-124.
[40] H. Mori, H. Mio, J. Kano, F. Saito, Ball mill simulation in wet grinding using a tumbling mill and its correlation to grinding rate, Powder Technology, 143 (2004) 230-239.
[41] A. Kumar, R. Sahu, S.K. Tripathy, Energy-efficient advanced ultrafine grinding of particles using stirred mills—a review, Energies, 16 (2023) 5277.
[42] A.M. Elbendari, S.S. Ibrahim, Optimizing key parameters for grinding energy efficiency and modeling of particle size distribution in a stirred ball mill, Scientific Reports, 15 (2025) 3374.
[43] M. Gao, E. Forssberg, Prediction of product size distributions for a stirred ball mill, Powder technology, 84 (1995) 101-106.
[44] C.F. Burmeister, A. Kwade, Process engineering with planetary ball mills, Chem Soc Rev, 42 (2013) 7660-7667.
[45] M. Mhadhbi, Effect of milling parameters on DEM modeling of a planetary ball mill, Advances in Materials Physics and Chemistry, 13 (2023) 49-58.
[46] S. Rosenkranz, S. Breitung-Faes, A. Kwade, Experimental investigations and modelling of the ball motion in planetary ball mills, Powder technology, 212 (2011) 224-230.
[47] P.M. Angelopoulos, G. Anastassakis, M. Taxiarchou, Investigating the impact of grinding techniques on shape properties of ground volcanic glass: insights from ball mill, vibrating pulverizer, and rotor mill, Particulate Science and Technology, (2025) 1-13.
[48] I. Krycer, J.A. Hersey, A comparative study of comminution in rotary and vibratory ball mills, Powder Technology, 27 (1980) 137-141.
[49] I. Krycer, J.A. Hersey, Grinding and granulation in a vibratory ball mill, Powder Technology, 28 (1981) 91-95.
[50] X. Bu, Y. Chen, G. Ma, Y. Sun, C. Ni, G. Xie, Wet and dry grinding of coal in a laboratory-scale ball mill: Particle-size distributions, Powder Technology, 359 (2020) 305-313.
[51] N. Kotake, M. Kuboki, S. Kiya, Y. Kanda, Influence of dry and wet grinding conditions on fineness and shape of particle size distribution of product in a ball mill, Advanced Powder Technology, 22 (2011) 86-92.
[52] H.J. Jung, Y. Sohn, H.G. Sung, H.S. Hyun, W.G. Shin, Physicochemical properties of ball milled boron particles: dry vs. wet ball milling process, Powder Technology, 269 (2015) 548-553.
[53] A. Ozkan, M. Yekeler, M. Calkaya, Kinetics of fine wet grinding of zeolite in a steel ball mill in comparison to dry grinding, International Journal of Mineral Processing, 90 (2009) 67-73.
[54] F. Shi, Comparison of grinding media—Cylpebs versus balls, Minerals Engineering, 17 (2004) 1259-1268.
[55] N. Lameck, K. Kiangi, M. Moys, Effects of grinding media shapes on load behaviour and mill power in a dry ball mill, Minerals engineering, 19 (2006) 1357-1361.
[56] N. Liao, C. Wu, J. Li, X. Fang, Y. Li, Z. Zhang, W. Yin, A comparison of the fine-grinding performance between cylpebs and ceramic balls in the wet tumbling mill, Minerals, 12 (2022) 1007.
[57] B. Loveday, H. Dong, Optimisation of autogenous grinding, Minerals Engineering, 13 (2000) 1341-1348.
[58] W.V. Jnr, S. Morrell, The development of a dynamic model for autogenous and semi-autogenous grinding, Minerals engineering, 8 (1995) 1285-1297.
[59] A.F. Rodrigues, H. Delboni Jr, M.S. Powell, L.M. Tavares, Comparing strategies for grinding itabirite iron ores in autogenous and semi-autogenous pilot-scale mills, Minerals Engineering, 163 (2021) 106780.
[60] S.P. Bangar, A. Singh, A.O. Ashogbon, H. Bobade, Ball-milling: A sustainable and green approach for starch modification, Int J Biol Macromol, 237 (2023) 124069.
[61] P.R. Patil, K.R. Kartha, Solvent-free synthesis of thioglycosides by ball milling, Green Chemistry, 11 (2009) 953-956.
[62] V.P. Balema, J.W. Wiench, M. Pruski, V.K. Pecharsky, Solvent-free mechanochemical synthesis of phosphonium salts, Chemical communications, (2002) 724-725.
[63] A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-free synthesis of a microporous metal–organic framework, CrystEngComm, 8 (2006) 211-214.
[64] G. Karagedov, N. Lyakhov, Mechanochemical grinding of inorganic oxides, KONA Powder and particle journal, 21 (2003) 76-87.
[65] W. Kurdowski, S. Duszak, B. Trybalska, Belite produced by means of low-temperature synthesis, Cement and concrete research, 27 (1997) 51-62.
[66] J. Rodrıguez, M. Rodrıguez, S. De Aza, P. Pena, Reaction sintering of zircon–dolomite mixtures, Journal of the European Ceramic Society, 21 (2001) 343-354.
[67] P. Cao, L. Xing, J. Luo, H. Jiang, X. Zhang, G. Li, Preparation of calcium silicate board from tobermorite-rich residue for energy conservation in buildings, Construction and Building Materials, 407 (2023) 133547.
[68] O. Tuominen, E. Tuominen, M. Vainio, T. Ruuska, J. Vinha, Thermal and moisture properties of calcium silicate insulation boards, MATEC web of conferences, EDP Sciences, 2019, pp. 02065.
[69] J. Vogan, L. Hsu, A. Stetson, Thermal barrier coatings for thermal insulation and corrosion resistance in industrial gas turbine engines, Thin Solid Films, 84 (1981) 75-87.
[70] Z. Gou, J. Chang, W. Zhai, J. Wang, Study on the self-setting property and the in vitro bioactivity of beta-Ca2SiO4, J Biomed Mater Res B Appl Biomater, 73 (2005) 244-251.
[71] X. Liu, M. Morra, A. Carpi, B. Li, Bioactive calcium silicate ceramics and coatings, Biomedicine & Pharmacotherapy, 62 (2008) 526-529.
[72] Z. Gou, J. Chang, W. Zhai, Preparation and characterization of novel bioactive dicalcium silicate ceramics, Journal of the European Ceramic Society, 25 (2005) 1507-1514.
[73] K.E. Kurtis, F.A. Rodrigues, Early age hydration of rice hull ash cement examined by transmission soft X-ray microscopy, Cement and Concrete Research, 33 (2003) 509-515.
[74] F. Rodrigues, P. Monteiro, Hydrothermal synthesis of cements from rice hull ash, Journal of materials science letters, 18 (1999) 1551-1552.
[75] W. Mazouzi, L. Kacimi, M. Cyr, P. Clastres, Properties of low temperature belite cements made from aluminosilicate wastes by hydrothermal method, Cement and Concrete Composites, 53 (2014) 170-177.
[76] K. Suzuki, S. Ito, T. Nishikawa, I. Shinno, Effect of Na, K and Fe on the formation of α-and β-Ca2SiO4, Cement and Concrete Research, 16 (1986) 885-892.
[77] A. Elhoweris, I. Galan, F.P. Glasser, Stabilisation of α′ dicalcium silicate in calcium sulfoaluminate clinker, Advances in Cement Research, 32 (2020) 112-124.
[78] N. Yamnova, N. Zubkova, N. Eremin, A. Zadov, V. Gazeev, Crystal structure of larnite β-Ca 2 SiO 4 and specific features of polymorphic transitions in dicalcium orthosilicate, Crystallography Reports, 56 (2011) 210-220.
[79] C. Gregson, R.A. Brooker, S.C. Kohn, O.T. Lord, Thermodynamic and kinetic controls on phase stability and incorporation of water in larnite (β-Ca2SiO4): implications for calcium silicate inclusions in diamonds, Contributions to Mineralogy and Petrology, 179 (2024) 82.
[80] E. Gobechiya, N. Yamnova, A. Zadov, V. Gazeev, Calcio-olivine γ-Ca 2 SiO 4: I. Rietveld refinement of the crystal structure, Crystallography Reports, 53 (2008) 404-408.
[81] A. Zadov, V. Gazeev, N. Pertsev, A. Gurbanov, N. Yamnova, E. Gobechiya, N. Chukanov, Discovery and investigation of a natural analog of calcio-olivine ([gamma]-Ca2SiO4), Doklady Earth Sciences, Springer Nature BV, 2008, pp. 1431.
[82] D. Kralj, B. Matković, R. Trojko, J.F. Young, C.J. Chan, Preparation of Dicalcium Siliciate at 950°C, Journal of the American Ceramic Society, 69 (2005).
[83] S. Maheswaran, S. Kalaiselvam, S. Arunbalaji, G.S. Palani, N.R. Iyer, Low-temperature preparation of belite from lime sludge and nanosilica through solid-state reaction, Journal of Thermal Analysis and Calorimetry, 119 (2015) 1845-1852.
[84] F.A. Rodrigues, Low-temperature synthesis of cements from rice hull ash, Cement and Concrete Research, 33 (2003) 1525-1529.
[85] D.M. Roy, S.O. Oyefesobi, Preparation of Very Reactive Ca2SiO4 Powder, Journal of the American Ceramic Society, 60 (2006) 178-180.
[86] W. Booncharoen, A. Jaroenworaluck, R. Stevens, A synthesis route to nanoparticle dicalcium silicate for biomaterials research, J Biomed Mater Res B Appl Biomater, 99 (2011) 230-238.
[87] R. Chrysafi, T. Perraki, G. Kakali, Sol–gel preparation of 2CaO·SiO2, Journal of the European Ceramic Society, 27 (2007) 1707-1710.
[88] I. Nettleship, J.L. Shull Jr, W.M. Kriven, Chemical preparation and phase stability of Ca2SiO4 and Sr2SiO4 powders, Journal of the European Ceramic Society, 11 (1993) 291-298.
[89] Z. Su, L. Li, Z. Liu, C. Huang, D. Wang, T. Wang, Fabrication, microstructure, and hydration of nano β-Ca2SiO4 powder by co-precipitation method, Construction and Building Materials, 296 (2021).
[90] H. Ishida, S. Yamazaki, K. Sasaki, Y. Okada, T. Mitsuda, α‐Dicalcium Silicate Hydrate: Preparation, Decomposed Phase, and Its Hydration, Journal of the American Ceramic Society, 76 (2005) 1707-1712.
[91] Y. Okada, K. Sasaki, B. Zhong, H. Ishida, T. Mitsuda, Formation Processes of β‐C2S by the Decomposition of Hydrothermally Prepared C‐S‐H with Ca(OH)2, Journal of the American Ceramic Society, 77 (2005) 1319-1323.
[92] N. Singh, Hydrothermal synthesis of β-dicalcium silicate (β-Ca2SiO4), Progress in Crystal Growth and Characterization of Materials, 52 (2006) 77-83.
[93] M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: past, present and future, Journal of Materials Science, 43 (2007) 2085-2103.
[94] M. Shandilya, R. Rai, J. Singh, Review: hydrothermal technology for smart materials, Advances in Applied Ceramics, 115 (2016) 354-376.
[95] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Progress in crystal growth and characterization of materials, 53 (2007) 117-166.
[96] Q. Xie, Z. Dai, W. Huang, J. Liang, C. Jiang, Y. Qian, Synthesis of ferromagnetic single-crystalline cobalt nanobelts via a surfactant-assistedhydrothermal reduction process, Nanotechnology, 16 (2005) 2958.
[97] W. Liu, W. Zhong, X. Wu, N. Tang, Y. Du, Hydrothermal microemulsion synthesis of cobalt nanorods and self-assembly into square-shaped nanostructures, Journal of Crystal Growth, 284 (2005) 446-452.
[98] H. Niu, Q. Chen, Y. Lin, Y. Jia, H. Zhu, M. Ning, Hydrothermal formation of magnetic Ni–Cu alloy nanocrystallites at low temperatures, Nanotechnology, 15 (2004) 1054.
[99] W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, K.S. TenHuisen, Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method, Biomaterials, 25 (2004) 4647-4657.
[100] W.L. Suchanek, P. Shuk, K. Byrappa, R.E. Riman, K.S. TenHuisen, V.F. Janas, Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature, Biomaterials, 23 (2002) 699-710.
[101] W.L. Suchanek, M. Yoshimura, Preparation of Strontium Titanate Thin Films by the Hydrothermal‐Electrochemical Method in a Solution Flow System, Journal of the American Ceramic Society, 81 (2005) 2864-2868.
[102] M. Yoshimura, W.L. Suchanek, T. Watanabe, B. Sakurai, In situ fabrication of SrTiO3–BaTiO3 layered thin films by hydrothermal-electrochemical technique, Journal of the European Ceramic Society, 19 (1999) 1353-1359.
[103] Y. Kim, J. Lee, Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent, Solar energy materials and solar cells, 98 (2012) 317-322.
[104] N.B. Singh, S. Rai, N. Singh, Highly Reactive β‐Dicalcium Silicate, Journal of the American Ceramic Society, 85 (2002) 2171-2176.
[105] S. Tarasiewicz, P. Radziszewski, Comminution energetics part III: Bond's law and breakage energy, Materials chemistry and physics, 25 (1990) 21-25.
[106] F. Khamis, D. Arafah, Thermoluminescence characteristics of natural quartz and synthesized silica glass prepared by sol-gel technique, Asian J. Phys. Chem. Sci, 3 (2017) 1-16.
[107] A. Meiszterics, L. Rosta, H. Peterlik, J. Rohonczy, S. Kubuki, P. Henits, K. Sinkó, Structural characterization of gel-derived calcium silicate systems, The Journal of Physical Chemistry A, 114 (2010) 10403-10411.
[108] P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan, X. Cong, Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy, Journal of the American Ceramic Society, 82 (2004) 742-748.
校內:2030-08-15公開