簡易檢索 / 詳目顯示

研究生: 翁子揚
Weng, Tzu-Yang
論文名稱: Wi-Fi步態感測-技術開發並結合IMU感測器以評估節奏聽覺刺激對帕金森病患者步態參數的影響
Wi-Fi Sensing for Gait - the technology development and its use with IMU Sensors for Assessing the Impact of Rhythmic Auditory Stimulation on Gait Parameters in Patients with Parkinson's Disease
指導教授: 林啟倫
Lin, Chi-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 73
中文關鍵詞: Wi-Fi感測技術通道狀態資訊慣性感測單元巴金森病節奏聽覺刺激步態
外文關鍵詞: Wi-Fi Sensing, Channel State Information, Inertial Measurement Unit, Parkinson's Disease, Rhythmic Auditory Stimulation, Gait
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 巴金森病是第二常見的神經退化疾病,全球約有一千萬人深受其擾,其中步態障礙是主要症狀之一,導致行走困難,提高跌倒風險,並限制移動能力。而步態分析系統能夠量測巴金森病患者的步態行為,以觀察病情嚴重程度,而過往文獻提到節奏聽覺刺激能夠改善患者的走路行為,因此也以步態分析技術觀察節奏聽覺刺激對步態參數的影響。
    本研究分兩部分,第一部分為實現可應用於巴金森病患者之Wi-Fi步態感測技術,以無接觸方式實現步態參數量化,沒有穿戴式系統的侷限性,也避免影像所造成的隱私問題。本研究針對訊號處理演算法提出重要修正以優化其感測性能,並以IMU作為驗證,在受試者以不同步調及步長的走路情況下,實現步數計算的平均誤差為6.17%、行走速度的平均誤差為10.31%、步長的平均誤差為14.52%,並且探討不同步態參數對動作量化誤差的影響,發現動作量化誤差的主要因子為步調的增加。
    第二部份結合Wi-Fi與IMU感測技術於臨床收案,並進行完整的步態分析,以探討節奏聽覺刺激對患者步態參數的影響。結果發現在10位巴金森病患者中,有5位因為節奏聽覺刺激提供的外部提示改善了走路行為,且較多人改善在轉身過程與步調的一致性,而Wi-Fi感測技術在臨床收案實測中,共蒐集9位巴金森病患者的資料,其中步數計算的平均誤差為6.42%,且透過量化行走速度與步長,能夠區分出步態障礙較為嚴重的患者,也發現有4位患者因為節奏聽覺刺激導致走路速度變快。

    Parkinson's disease is the second most common neurodegenerative disorder. One of the primary symptoms is gait disturbances. Gait analysis systems can measure the gait behavior of Parkinson's patients to observe the severity of the condition. Previous literature has mentioned that rhythmic auditory stimulation can improve walking behavior in patients. Therefore, this study aims to investigate the influence of rhythmic auditory stimulation on gait parameters using gait analysis technology.
    This research consists of two parts. The first part focuses on implementing a Wi-Fi-based gait sensing technology applicable to Parkinson's patients. It quantifies gait parameters in a contactless manner, avoiding the limitations of wearable systems and addressing privacy concerns associated with imaging. Significant adjustments were made to the signal processing algorithm to optimize its sensing performance. Validation using Inertial Measurement Units (IMUs) demonstrated an average error of 6.17% in step count calculation, 10.31% in walking speed, and 14.52% in step length under various walking conditions with different cadences and step lengths. The study also explores the impact of different gait parameters on motion quantification error, revealing that an increased cadence is the primary contributing factor.
    The second part combines Wi-Fi and IMU sensing technologies for clinical trials, conducting a comprehensive gait analysis to assess the effect of rhythmic auditory stimulation on patient gait parameters. The results indicate that among the ten Parkinson's patients, five showed improvement in walking behavior due to external cues provided by rhythmic auditory stimulation. Moreover, a greater number of individuals demonstrated improved consistency in turning and cadence. During the clinical trial with Wi-Fi sensing technology, data from nine Parkinson's patients were collected. The average error in step count calculation was 6.42%. Additionally, through quantifying walking speed and step length, it was possible to distinguish patients with more severe gait impairments. Interestingly, four patients exhibited an increase in walking speed due to rhythmic auditory stimulation.

    摘要 i Extended Abstract ii 誌謝 xiv 目錄 xv 表目錄 xix 圖目錄 xx 第一章 緒論 1 1.1 研究背景 1 1.1.1 巴金森病 1 1.1.2 巴金森病的評估、追蹤與治療 1 1.1.3 節奏聽覺刺激 3 1.1.4 評估與追蹤巴金森病情的挑戰 3 1.1.5 無線感測技術 4 1.2 文獻回顧 4 1.2.1 巴金森病輔助評估技術 4 1.2.2 無線感測技術 6 1.2.3 利用無線裝置偵測步態文獻搜尋策略 7 1.3 研究目的 12 第二章 研究方法 13 2.1 步態週期與步態參數 13 2.2 Wi-Fi感測技術理論 15 2.2.1 通道狀態資訊 15 2.2.2 菲涅耳場區 16 2.3 Wi-Fi訊號前處理 17 2.3.1 帶通濾波 17 2.3.2 主成分分析 18 2.3.3 短時距傅立葉轉換 19 2.3.4 頻譜去噪 20 2.4 Wi-Fi動作量化原理 21 2.4.1 行走速度估計 21 2.4.2 步數計算 22 2.4.3 步長估計 22 2.5 Wi-Fi動作量化演算法實現 22 2.5.1 最大值輪廓 22 2.5.2 上緣輪廓 23 2.5.3 加權平均 24 2.5.4 峰值選擇 24 2.6 慣性感測單元 25 2.6.1 臨床分析應用 25 2.6.2 應用於Wi-Fi感測技術驗證 26 2.7 節奏聽覺刺激 27 第三章 Wi-Fi 感測技術測試 28 3.1 實驗設備與設定 28 3.2 不同步態參數測試 28 3.2.1 實驗設置 28 3.2.2 資料蒐集 29 3.2.3 擷取動作區間 30 3.2.4 誤差計算方式 30 第四章 臨床收案應用與分析 33 4.1 受試者招募 33 4.2 實驗設置 33 4.3 實驗流程 35 4.4 資料蒐集狀況 36 4.5 以IMU感測技術分析 37 4.6 以Wi-Fi感測技術分析 37 4.6.1 Wi-Fi感測技術步數計算性能評估 37 4.6.2 Wi-Fi感測技術實現動作量化 38 4.6.3 以Wi-Fi評估節奏聽覺刺激對步態參數的影響 38 第五章 實驗結果 39 5.1 Wi-Fi感測技術測試 39 5.1.1 動作量化演算法選擇 39 5.2 步數計算性能評估 40 5.2.1 速度估計性能評估 41 5.2.2 步長估計性能評估 41 5.2.3 綜合評估 42 5.3 臨床收案應用與分析 44 5.3.1 IMU分析結果 44 5.3.2 Wi-Fi感測技術步數計算性能評估 47 5.3.3 Wi-Fi感測技術實現動作量化 48 5.3.4 以Wi-Fi評估節奏聽覺刺激對步態參數的影響 49 第六章 討論 51 6.1 動作量化演算法比較 51 6.1.1 步數計算 51 6.1.2 速度估計 52 6.2 不同步態參數測試結果討論 53 6.2.1 步數計算 53 6.2.2 速度估計 53 6.2.3 步長估計 53 6.3 不同步態參數對於動作量化誤差之影響 54 6.3.1 步長之影響 54 6.3.2 步調之影響 55 6.3.3 速度的影響 57 6.3.4 小結 59 6.4 探討偵測步態不平衡之可行性 60 6.5 以IMU分析節奏聽覺刺激對巴金森病患者步態參數之影響 61 6.6 Wi-Fi應用於巴金森病患者之分析結果 62 6.6.1 步數計算性能評估 62 6.6.2 以Wi-Fi偵測步態障礙 63 6.6.3 以Wi-Fi評估節奏聽覺刺激對步態參數的影響 64 6.6.4 小結 65 第七章 結論與未來研究方向 66 7.1 結論 66 7.2 未來研究方向 68 參考文獻 70

    [1] P. Chopade, N. Chopade, Z. Zhao, S. Mitragotri, R. Liao, and V. Chandran Suja, "Alzheimer's and Parkinson's disease therapies in the clinic," Bioengineering & Translational Medicine, vol. 8, no. 1, p. e10367, 2023.
    [2] C. A. Davie, "A review of Parkinson's disease," British medical bulletin, vol. 86, no. 1, pp. 109-127, 2008.
    [3] P. Jenner, "Molecular mechanisms of L-DOPA-induced dyskinesia," Nature Reviews Neuroscience, vol. 9, no. 9, pp. 665-677, 2008.
    [4] M. J. Armstrong and M. S. Okun, "Diagnosis and treatment of Parkinson disease: a review," Jama, vol. 323, no. 6, pp. 548-560, 2020.
    [5] P. Pohl, N. Dizdar, and E. Hallert, "The Ronnie Gardiner Rhythm and Music Method–a feasibility study in Parkinson’s disease," Disability and rehabilitation, vol. 35, no. 26, pp. 2197-2204, 2013.
    [6] N. de Bruin et al., "Walking with music is a safe and viable tool for gait training in Parkinson's disease: the effect of a 13-week feasibility study on single and dual task walking," Parkinson’s disease, vol. 2010, 2010.
    [7] F. Van Vugt, T. Kafczyk, W. Kuhn, J. Rollnik, B. Tillmann, and E. Altenmüller, "The role of auditory feedback in music-supported stroke rehabilitation: a single-blinded randomised controlled intervention," Restorative neurology and neuroscience, vol. 34, no. 2, pp. 297-311, 2016.
    [8] Y. Cha, Y. Kim, S. Hwang, and Y. Chung, "Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: a pilot randomized controlled study," NeuroRehabilitation, vol. 35, no. 4, pp. 681-688, 2014.
    [9] A. Marcante et al., "Foot pressure wearable sensors for freezing of gait detection in Parkinson’s disease," Sensors, vol. 21, no. 1, p. 128, 2020.
    [10] C.-N. LEE et al., "Dynamic foot pressure measurement in Parkinson's disease with foot scan system," Journal of the Korean Neurological Association, pp. 172-179, 2007.
    [11] Y.-R. Yang, Y.-Y. Lee, S.-J. Cheng, P.-Y. Lin, and R.-Y. Wang, "Relationships between gait and dynamic balance in early Parkinson's disease," Gait & posture, vol. 27, no. 4, pp. 611-615, 2008.
    [12] C. Caramia et al., "IMU-based classification of Parkinson's disease from gait: A sensitivity analysis on sensor location and feature selection," IEEE journal of biomedical and health informatics, vol. 22, no. 6, pp. 1765-1774, 2018.
    [13] T. Bikias, D. Iakovakis, S. Hadjidimitriou, V. Charisis, and L. J. Hadjileontiadis, "DeepFoG: an IMU-based detection of freezing of gait episodes in Parkinson’s disease patients via deep learning," Frontiers in Robotics and AI, vol. 8, p. 537384, 2021.
    [14] C.-W. Cho, W.-H. Chao, S.-H. Lin, and Y.-Y. Chen, "A vision-based analysis system for gait recognition in patients with Parkinson’s disease," Expert Systems with applications, vol. 36, no. 3, pp. 7033-7039, 2009.
    [15] S.-W. Chen et al., "Quantification and recognition of parkinsonian gait from monocular video imaging using kernel-based principal component analysis," Biomedical engineering online, vol. 10, pp. 1-21, 2011.
    [16] L. Fraiwan, R. Khnouf, and A. R. Mashagbeh, "Parkinson’s disease hand tremor detection system for mobile application," Journal of medical engineering & technology, vol. 40, no. 3, pp. 127-134, 2016.
    [17] C.-M. Chang, Y.-L. Huang, J.-C. Chen, and C.-C. Lee, "Improving automatic tremor and movement motor disorder severity assessment for Parkinson’s disease with deep joint training," in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019: IEEE, pp. 3408-3411.
    [18] T. Wu and M. Hallett, "A functional MRI study of automatic movements in patients with Parkinson's disease," Brain, vol. 128, no. 10, pp. 2250-2259, 2005.
    [19] Y. Zeng, P. H. Pathak, and P. Mohapatra, "WiWho: WiFi-based person identification in smart spaces," in 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), 2016: IEEE, pp. 1-12.
    [20] L. Zhang, C. Wang, M. Ma, and D. Zhang, "WiDIGR: Direction-independent gait recognition system using commercial Wi-Fi devices," IEEE Internet of Things Journal, vol. 7, no. 2, pp. 1178-1191, 2019.
    [21] D. Wu, D. Zhang, C. Xu, Y. Wang, and H. Wang, "WiDir: Walking direction estimation using wireless signals," in Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing, 2016, pp. 351-362.
    [22] K. Qian, C. Wu, Z. Yang, Y. Liu, and K. Jamieson, "Widar: Decimeter-level passive tracking via velocity monitoring with commodity Wi-Fi," in Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2017, pp. 1-10.
    [23] K. Qian, C. Wu, Y. Zhang, G. Zhang, Z. Yang, and Y. Liu, "Widar2. 0: Passive human tracking with a single Wi-Fi link," in Proceedings of the 16th annual international conference on mobile systems, applications, and services, 2018, pp. 350-361.
    [24] X. Li et al., "IndoTrack: Device-free indoor human tracking with commodity Wi-Fi," Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 3, pp. 1-22, 2017.
    [25] Y. Wang, K. Wu, and L. M. Ni, "Wifall: Device-free fall detection by wireless networks," IEEE Transactions on Mobile Computing, vol. 16, no. 2, pp. 581-594, 2016.
    [26] A. Tahir et al., "WiFreeze: Multiresolution scalograms for freezing of gait detection in Parkinson’s leveraging 5G spectrum with deep learning," Electronics, vol. 8, no. 12, p. 1433, 2019.
    [27] Y. Xu, W. Yang, J. Wang, X. Zhou, H. Li, and L. Huang, "WiStep: Device-free step counting with WiFi signals," Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, pp. 1-23, 2018.
    [28] J. He and W. Yang, "IMep: Device-free multiplayer step counting with WiFi signals," IEEE Transactions on Mobile Computing, 2022.
    [29] M. Liu, L. Zhang, P. Yang, L. Lu, and L. Gong, "Wi-Run: Device-free step estimation system with commodity Wi-Fi," Journal of Network and Computer Applications, vol. 143, pp. 77-88, 2019.
    [30] G. Zhang, Z. Tian, M. Zhou, and X. Chen, "Gait cycle detection using commercial WiFi device," in International Conference in Communications, Signal Processing, and Systems, 2020: Springer, pp. 1224-1231.
    [31] X. Guo, B. Liu, C. Shi, H. Liu, Y. Chen, and M. C. Chuah, "WiFi-enabled smart human dynamics monitoring," in Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, 2017, pp. 1-13.
    [32] L. Tian, L. Chen, Z. Xu, and Z. Chen, "A people-counting and speed-estimation system using wi-fi signals," Sensors, vol. 21, no. 10, p. 3472, 2021.
    [33] W. Wang, A. X. Liu, and M. Shahzad, "Gait recognition using wifi signals," in Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 363-373.
    [34] F. Zhang, C. Chen, B. Wang, and K. R. Liu, "WiSpeed: A statistical electromagnetic approach for device-free indoor speed estimation," IEEE Internet of Things Journal, vol. 5, no. 3, pp. 2163-2177, 2018.
    [35] 李晟洁, 李翔, 张越, 王亚沙, and 张大庆, "Walking Recognition and Parameters Estimation Based on Wi-Fi Channel State Information," Journal of Software, vol. 32, no. 10, pp. 3122-3138, 2020.
    [36] C.-L. Lin, W.-J. Chang, and G.-H. Tu, "Wi-Fi-Based Tracking of Human Walking for Home Health Monitoring," IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8935-8942, 2021.
    [37] C. Wu, F. Zhang, Y. Hu, and K. R. Liu, "GaitWay: Monitoring and recognizing gait speed through the walls," IEEE Transactions on Mobile Computing, vol. 20, no. 6, pp. 2186-2199, 2020.
    [38] T. Gujarathi and K. Bhole, "Gait analysis using imu sensor," in 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2019: IEEE, pp. 1-5.
    [39] T. Stöckel, R. Jacksteit, M. Behrens, R. Skripitz, R. Bader, and A. Mau-Moeller, "The mental representation of the human gait in young and older adults," Frontiers in psychology, vol. 6, p. 943, 2015.
    [40] Z. Wang et al., "A survey on human behavior recognition using channel state information," Ieee Access, vol. 7, pp. 155986-156024, 2019.
    [41] 張文嘉, "以通道狀態資訊實現室內定位、追蹤與步態分析," 國立成功大學機械工程學系學位論文, pp. 1-86, 2020.
    [42] "Cometa Systems." https://www.cometasystems.com/ (accessed.
    [43] Q. Li, M. Young, V. Naing, and J. Donelan, "Walking speed and slope estimation using shank-mounted inertial measurement units," in 2009 IEEE International Conference on Rehabilitation Robotics, 2009: IEEE, pp. 839-844.
    [44] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, "Tool release: Gathering 802.11 n traces with channel state information," ACM SIGCOMM computer communication review, vol. 41, no. 1, pp. 53-53, 2011.
    [45] J. Schäfer, B. R. Barrsiwal, M. Kokhkharova, H. Adil, and J. Liebehenschel, "Human activity recognition using CSI information with nexmon," Applied Sciences, vol. 11, no. 19, p. 8860, 2021.

    無法下載圖示 校內:2028-10-12公開
    校外:2028-10-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE