| 研究生: |
廖于凱 Liao, Yu-Kai |
|---|---|
| 論文名稱: |
心臟腱索的超黏彈性分析 Visco-hyperelastic Analysis on Chordae Tendineae |
| 指導教授: |
劉立偉
Liu, Li-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 心臟腱索 、超黏彈性模式 、廣義非線性Kelvin模式 、階梯潛變實驗 、階梯鬆弛實驗 |
| 外文關鍵詞: | chordae tendineae, visco-hyperelastic model, generalized nonlinear Kelvin model, step-wise creep test, step-wise relaxation test |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心臟腱索連接心臟房室瓣膜和乳突肌,它的功能是確保心臟瓣膜能夠正常的運作,防止血液逆流回心房。先前的研究多將心臟腱索以線性彈性或非線性彈性模式描述其力學行為。然而,心臟腱索的實驗證據卻呈現不同的力學現象。本研究以廣義黏彈性Kelvin模式結合超彈性Ogden模式,提出廣義非線性Kelvin模式來描述心臟腱索的力學行為,其中以較佳的超彈性部份來獲得更貼近軟組織的非線性力學行為,另一方面則以黏彈性部份達到材料的時間相依特性,企圖提出一個能很好描述心臟腱索黏彈性行為的模式。為了更了解此模式的內涵,在理論上,我們求出模式的切線模數,藉此研究位移、速度、力量與加力速度對切線斜率的影響。於位移與力量控制下,以四階Runge-Kutta數值方法來獲得模式反應,並分別求得鬆弛試驗與潛變試驗下的結果。在模擬實驗上,選用標準非線性固體模式(一階廣義非線性Kelvin模式與Ogden彈簧串聯),並且根據心臟腱索的潛變實驗,決定模式參數。進一步,藉由階梯潛變實驗、階梯鬆弛實驗、單邊循環載重實驗與多階段複合路徑實驗來探索並了解廣義非線性Kelvin-Ogden模式的能力與心臟腱索的力學行為。在未來,模擬實驗將與真實的心臟腱索實驗進行比對,以便獲得更匹配的參數或者更好的廣義非線性Kelvin模式選擇。這項研究將加深對心臟腱索力學行為的理解,並希望在未來能進一步幫助我們改善腱索失效的治療方法。
The chordae tendineae connects the atrioventricular heart valves and the papillary muscle. Its function is to ensure that the heart valve can function normally and prevent blood from flowing back to the atrium. Previous studies had mostly described the mechanical behavior of the chordae tendineae by linear elastic or nonlinear elastic models. However, the experimental evidence of chordae showed different mechanical phenomena. In this study, combining the generalized viscoelastic Kelvin model with the hyperelastic Ogden model, we formulated the generalized nonlinear Kelvin-Ogden model, which is capable of describing the mechanical behavior of the chordae tendineae. In this model, the hyperelastic part is used to obtain the nonlinear behavior of the chordae and the viscoelastic part is used to describe its time-dependent properties. In order to better understand the model, from a theoretical perspective, we focused on the tangent modulus of the model and studied the effects of displacement, velocity, force and loading rate on it. Under the displacement control and the force control, the model formulation was rearranged and the fourth-order Runge-Kutta was used to solve the model and obtained the response under the relaxation test as well as the response of the creep test. In the simulation, the standard nonlinear solid model (the first-order generalized nonlinear Kelvin mode and Ogden spring in series) was selected, and the model parameters were determined according to a creep test of the chordae tendineae. Furthermore, we explored the capacity of the generalized nonlinear Kelvin-Ogden model and the mechanical behavior of the chordae tendineae via the step-wise creep testing, the step-wise relaxation testing, the cyclic loading experiment and the multi-stage compound path experiment. In the future, simulations will be compared with experimental results of the chordae in order to obtain more proper parameters or better selection of generalized nonlinear Kelvin models. This study would underpin the understanding of the behavior of chordae tendineae and further enable us to improve the therapies for chordae failure.
[1] M. Amabili, P. Balasubramanian, I. Bozzo, I. D. Breslavsky, and G. Ferrari.Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas.Journal of the Mechanical Behavior of Biomedical Materials,99:27–46, 2019.
[2] A. F. M. S. Amin, M. S. Alam, and Y. Okui. An improved hyperelasticity re-lation in modeling viscoelasticity response of natural and high damping rubbers in compression: Experiments, parameter identification and numerical verification.Mechanics of Materials, 34(2):75–95, 2002.
[3] J. E. Barber, F. K. Kasper, N. B. Ratliff, D. M. Cosgrove, B. P. Griffin, andI. Vesely. Mechanical properties of myxomatous mitral valves.Journal of Thoracic and Cardiovascular Surgery, 122(5):955–962, 2001.
[4] J. A. Casado, S. Diego, D. Ferreño, E. Ruiz, I. Carrascal, D. Méndez, J. M.Revuelta, A. Pontón, J. M. Icardo, and F. Gutiérrez-Solana. Determination of the mechanical properties of normal and calcified human mitral chordae tendineae.Journal of the Mechanical Behavior of Biomedical Materials, 13:1, 2012.
[5] C. W. Chung and M. L. Buist. A novel nonlinear viscoelastic solid model.Non-linear Analysis: Real World Applications, 13(3):1480–1488, 2012.
[6] R. De Rooij and E. Kuhl. Constitutive modeling of brain tissue: current perspectives.Applied Mechanics Reviews, 68(1), 2016.
[7] A. Fallah, M. T. Ahmadian, and M. M. Aghdam. Rate-dependent behavior of connective tissue through a micromechanics-based hyper viscoelastic model.International Journal of Engineering Science, 121:91–107, 2017.
[8] M. H. Farid, M. Ramzanpour, J. McLean, M. Ziejewski, and G. Karami. A poro-hyper-viscoelastic rate-dependent constitutive modeling for the analysis of brain tissues.Journal of the Mechanical Behavior of Biomedical Materials, 102:103475,2020.[9] Y. C. Fung.Biomechanics : mechanical properties of living tissues.Springer-Verlag, 1993.
[10] T. C. Gasser, R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.Journal of the Royal Society Interface, 3(6):15–35, 2006.
[11] A. Gilmanov, H. Stolarski, and F. Sotiropoulos. Non-linear rotation-free shell finite-element models for aortic heart valves.Journal of Biomechanics, 50:56–62,2017.
[12] J. M. Guccione, A. D. McCulloch, and L. K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model.Journal of Biomechanical Engineering, 113(1):42–55, 1991.
[13] M. A. Hassan, M. Hamdi, and A. Noma. The nonlinear elastic and viscoelastic passive properties of left ventricular papillary muscle of a guinea pig heart.Journal of the Mechanical Behavior of Biomedical Materials, 5(1):99–109, 2012.
[14] J. C. Iatridis, J. Wu, J. A. Yandow, and H. M. Langevin. Subcutaneous tissue mechanical behavior is linear and viscoelastic under uniaxial tension.Connective Tissue Research, 44(5):208–217, 2003.
[15] J. H. Jimenez, D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of as addle shaped annulus on mitral valve function and chordal force distribution: an in vitro study.Annals of Biomedical Engineering, 31(10):1171 – 1181, 2003.
[16] M. R. Labrosse, R. Jafar, J. Ngu, and M. Boodhwani. Planar biaxial testing of heart valve cusp replacement biomaterials: Experiments, theory and material constants.Acta Biomaterialia, 45:303–320, 2016.
[17] C. H. Lee, R. Amini, R. C. Gorman, J. H. Gorman, III, and M. S. Sacks. An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in-vivo valvular biomaterial assessment.Journal of Biomechanics, 47(9):2055–2063, 2014.
[18] K. H. Lim, J. H. Yeo, and C. M. G. Duran. Three-dimensional asymmetric almodeling of the mitral valve: a finite element study with dynamic boundaries.The Journal of heart valve disease, 14(3):386–392, 2005.
[19] K. May-Newman, C. Lam, and F. C. P. Yin. A hyperelastic constitutive law for aortic valve tissue.Journal of Biomechanical Engineering - Transactions of the ASME, 131(8), 2009.
[20] K. May-Newman and F. C. P. Yin. A constitutive law for mitral valve tissue.Journal of Biomechanical Engineering, 120(1):38, 1998.
[21] M. Mooney. A theory of large elastic deformation.Journal of Applied Physics,11(9):582, 1940.
[22] K. Narooei and M. Arman. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.Journal of the Mechanical Behavior of Biomedical Materials, 79:104–113, 2018.
[23] M. Nightingale and M. R. Labrosse. Material characterization of cardiovascular biomaterials using an inverse finite-element method and an explicit solver.Journal of Biomechanics, 79:207–211, 2018.
[24] R. W. Ogden.Non-linear elastic deformations.Ellis Horwood series in mathematics and its applications. E. Horwood, 1984.
[25] S. K. Panda and M. L. Buist. A finite nonlinear hyper-viscoelastic model for soft biological tissues.Journal of Biomechanics, 69:121–128, 2018.
[26] A. Rassoli, N. Fatouraee, and R. Guidoin. Structural model for viscoelastic properties of pericardial bioprosthetic valves.Artificial Organs, 42(6):630–639, 2018.
[27] J. Ritchie, J. Jimenez, Z. He, M. S. Sacks, and A. P. Yoganathan. The mate-rial properties of the native porcine mitral valve chordae tendineae: An in vitro investigation.Journal of Biomechanics, 39(6):1129–1135, 2006.
[28] C. J. Ross, Z. Junnan, M. Liang, W. Yi, and C. H. Lee. Mechanics and microstructure of the atrioventricular heart valve chordae tendineae: A review.Bioengineering (Basel), 7(1):1, 2020.
[29] M. S. Sacks. A method for planar biaxial mechanical testing that includes in-plane shear.Journal of Biomechanical Engineering - Transactions of the ASME, 121(5):551–555, 1999.
[30] A. B. Tepole, H. Kabaria, K. U. Bletzinger, and E. Kuhl. Isogeometric kirchhoff-love shell formulations for biological membranes.Computer Methods in Applied Mechanics and Engineering, 293:328–347, 2015.
[31] B. F. Waller, J. Howard, and S. Fess. Pathology of mitral valve stenosis and pure mitral regurgitation-part ii.Clinical cardiology, 17(7):395–402, 1994.
[32] M. C. H. Wu, R. Zakerzadeh, D. Kamensky, J. Kiendl, M. S. Sacks, and M. C. Hsu.An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves.Journal of Biomechanics, 74:23–31, 2018.
[33] L. M. Yang, V. P. W. Shim, and C. T. Lim. A visco-hyperelastic approach to modelling the constitutive behaviour of rubber.International Journal of Impact Engineering, 24(6):545–560, 2000.
[34] O. H. Yeoh. Some forms of the strain energy function for rubber.Rubber Chemistry and Technology, 66(5):754–771, 1993.
[35] K. Zuo, T. Pham, K. Li, C. Martin, Z. He, and W. Sun. Characterization ofbiomechanical properties of aged human and ovine mitral valve chordae tendineae.Journal of the Mechanical Behavior of Biomedical Materials, 62:607–618, 2016.