簡易檢索 / 詳目顯示

研究生: 蔡昇峰
Tsai, Sheng-Feng
論文名稱: 代謝型疾病與情感型疾病間交互作用的機制研究
Studying the mechanisms underlying the interactions between metabolic disorders and mood disorders
指導教授: 郭余民
Kuo, Yu-Min
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 105
中文關鍵詞: 肥胖糖尿病憂鬱症膠細胞麩胺酸轉運子利魯唑
外文關鍵詞: obesity, diabetes, depression, glial glutamate transporters, riluzole
相關次數: 點閱:120下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 代謝型疾病與憂鬱症為二重要的全球性健康議題。其高共病性顯示此二疾病間有所交互作用。釐清此二疾病間之交互作用將有助於發展出,針對此二疾病患者之全人照護方針。本研究中,吾人利用高脂飲食來於實驗小鼠中誘發代謝型疾病。結果顯示,高脂飲食導致腎上腺皮質激素,例:皮質酮,之過度分泌。而此因高脂飲食所導致之皮質酮過泌,參與在高脂飲食所導致之脂肪新生當中。此外,高脂飲食亦導致小鼠表現出類憂鬱行為。相較於正常小鼠,在高脂餵養小鼠的海馬回內,其星狀膠細胞突觸之複雜程度與膠細胞麩胺酸轉運子之表現量都降低。而利用慢病毒敲落來下調膠細胞麩胺酸轉運子於海馬回中之表現量,得以在正常小鼠中誘發出類憂鬱表現。而給予高脂餵養小鼠利魯唑治療,則可回復其海馬回內膠細胞麩胺酸轉運子之表現量,並可改善類憂鬱症狀。

    Metabolic disorders and depression are two important global health issues. A high comorbidity of these two disorders suggests that an interaction exists between these two diseases. In order to comprehensively care the patients suffering from both of these disorders, it is crucial to characterize the interplays between metabolic disorders and depression. We adopted high-fat diet to induce metabolic disorders in mice. Results showed that high-fat diet led to an over-secretion of adrenocortical hormones, especially corticosterone, in mice. The high-fat diet-induced increment of corticosterone was essential for the adipogenesis contributing to adipose expansion during the development of high-fat diet-induced obesity in mice. Moreover, high-fat diet induced depression-like behaviors but not anxiety and memory deficits in mice. The complexity of astrocytic process arbors was suppressed and the expression of glial glutamate transporters. i.e. GLAST and GLT-1, was reduced in the hippocampus of mice fed with high-fat diet. Virally knockdowning the hippocampal expression of GLAST and GLT-1 induced depression-like phenotypes in naïve mice. Riluzole, a glutamatergic transmission normalizer, restored the hippocampal levels of GLAST and GLT-1 and reversed the exhibitions of depression-like behaviors in the mice fed with high-fat diet.

    摘要 I Abstract II Table of Contents III List of Tables VII List of Figures VIII Abbreviations XI Chapter 1: Introduction 1 1.1 Metabolic Disorders and Mood Disorders 1 1.2 Stress and Metabolic Disorders 2 1.3 Stress and Mood Disorders 3 1.4 Depression and Glutamatergic Transmission 4 1.5 Astrocytes, Hippocampal Glutamatergic Transmission and Depression 5 Chapter 2: Objective and Specific Aims 8 Chapter 3: Materials and Methods 11 3.1 Animals 11 3.2 HFD feeding 11 3.3 The hepatic and circulating lipid concentration measurements 12 3.4 Measuring fasting plasma levels of glucose and insulin 13 3.5 SD stress 13 3.6 Plasma hormone level measurements 14 3.7 Bilateral adrenalectomies 14 3.8 Tissue preparation 15 3.9 Hematoxylin/eosin staining and adipose tissue morphology assays 15 3.10 Re-supplementing CORT to the ADX mice 16 3.11 Immunoblotting 16 3.12 3T3-L1 cell cultures 17 3.13 Oil Red O staining for 3T3-L1 cell cultures 19 3.14 Forced swimming test 19 3.15 Sucrose preference test 19 3.16 Morris water maze test 20 3.18 Open field test 21 3.19 Elevated plus maze test 22 3.20 Retrogradely labeling the hippocampal neurons projecting to the NAc 22 3.21 Immunostaining 22 3.22 Measurement of intra-NAc glutamate concentrations 23 3.23 Preparations of lentiviruses for knockdowning GLAST and GLT-1 24 3.24 Knockdowning the hippocampal expression of GLAST and GLT-1 in naïve mice 25 3.25 Riluzole treatment 26 3.26 Statistical analysis 26 Chapter 4: Results 28 4.1 A 12-week HFD regimen induces abnormal glucose and lipid metabolisms in mice 28 4.2 Stress aggravates HFD-induced insulin resistance in mice 28 4.3 HFD leads to an over-secretion of adrenocortical hormones in mice 29 4.4 CORT is essential for the development of HFD-induced obesity in mice 30 4.5 CORT is essential for the adipogenesis contributing to adipose expansion during the development of HFD-induced obesity in mice 32 4.6 HFD-induced increment of CORT is essential for adipogenesis contributing to adipose expansion during development of HFD-induced obesity in mice 35 4.7 Glucocorticoids suppress the Pref-1 expression and are essential for lipid accumulations in the 3T3-L1 preadipocyte-like cells 36 4.8 A 12-week HFD regimen induces depression-like behaviors but not anxiety and memory deficits in mice 38 4.9 A 12-week HFD regimen induces an over-activated hippocampal glutamatergic afferent to the NAc in mice 39 4.10 A 12-week HFD regimen reduces the hippocampal expression of glial glutamate transporters 41 4.11 Knockdowning the hippocampal expression of GLAST and GLT-1 induces depression-like behaviors in naïve mice 41 4.12 A 21-day riluzole treatment restores the hippocampal expression of GLAST and GLT-1 and alleviates the depression-like behaviors in the HFD mice 43 Chapter 5: Discussion 45 5.1 Stress aggravates HFD-induced insulin resistance 45 5.2 HFD-induced increment of CORT is essential for adipogenesis contributing to adipose expansion during the development of HFD-induced obesity in mice 47 5.3 Riluzole rescues the HFD-induced depression-like behaviors possibly via restoring the hippocampal expression of GLAST and GLT-1 in mice 49 Chapter 6: Conclusions 55 Chapter 7: References 56 Chapter 8: Tables 75 Chapter 9: Figures 76 Chapter 10: Publications 104

    1. Golden, S. H., Robinson, K. A., Saldanha, I., Anton, B. & Ladenson, P. W. (2009) Clinical review: Prevalence and incidence of endocrine and metabolic disorders in the United States: a comprehensive review, J Clin Endocrinol Metab. 94, 1853-78.
    2. Mansur, R. B., Brietzke, E. & McIntyre, R. S. (2015) Is there a "metabolic-mood syndrome"? A review of the relationship between obesity and mood disorders, Neurosci Biobehav Rev. 52, 89-104.
    3. Kessler, R. C. & Bromet, E. J. (2013) The epidemiology of depression across cultures, Annu Rev Public Health. 34, 119-38.
    4. Richards, D. (2011) Prevalence and clinical course of depression: a review, Clin Psychol Rev. 31, 1117-25.
    5. Golden, S. H., Lazo, M., Carnethon, M., Bertoni, A. G., Schreiner, P. J., Diez Roux, A. V., Lee, H. B. & Lyketsos, C. (2008) Examining a bidirectional association between depressive symptoms and diabetes, JAMA. 299, 2751-9.
    6. McIntyre, R. S., Rasgon, N. L., Kemp, D. E., Nguyen, H. T., Law, C. W., Taylor, V. H., Woldeyohannes, H. O., Alsuwaidan, M. T., Soczynska, J. K., Kim, B., Lourenco, M. T., Kahn, L. S. & Goldstein, B. I. (2009) Metabolic syndrome and major depressive disorder: co-occurrence and pathophysiologic overlap, Curr Diab Rep. 9, 51-9.
    7. Baxter, A. J., Scott, K. M., Ferrari, A. J., Norman, R. E., Vos, T. & Whiteford, H. A. (2014) Challenging the myth of an "epidemic" of common mental disorders: trends in the global prevalence of anxiety and depression between 1990 and 2010, Depress Anxiety. 31, 506-16.
    8. Taylor, V. & MacQueen, G. (2006) Associations between bipolar disorder and metabolic syndrome: A review, J Clin Psychiatry. 67, 1034-41.
    9. Tennant, C. (2002) Life events, stress and depression: a review of recent findings, Aust N Z J Psychiatry. 36, 173-82.
    10. Tamashiro, K. L., Sakai, R. R., Shively, C. A., Karatsoreos, I. N. & Reagan, L. P. (2011) Chronic stress, metabolism, and metabolic syndrome, Stress. 14, 468-74.
    11. Yau, Y. H. & Potenza, M. N. (2013) Stress and eating behaviors, Minerva Endocrinol. 38, 255-67.
    12. Torres, S. J. & Nowson, C. A. (2007) Relationship between stress, eating behavior, and obesity, Nutrition. 23, 887-94.
    13. Dallman, M. F. (2010) Stress-induced obesity and the emotional nervous system, Trends Endocrinol Metab. 21, 159-65.
    14. Coccurello, R., D'Amato, F. R. & Moles, A. (2009) Chronic social stress, hedonism and vulnerability to obesity: lessons from rodents, Neurosci Biobehav Rev. 33, 537-50.
    15. Surguladze, S., Brammer, M. J., Keedwell, P., Giampietro, V., Young, A. W., Travis, M. J., Williams, S. C. & Phillips, M. L. (2005) A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder, Biol Psychiatry. 57, 201-9.
    16. Murray, E. A., Wise, S. P. & Drevets, W. C. (2011) Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala, Biol Psychiatry. 69, e43-54.
    17. Rodrigues, S. M., LeDoux, J. E. & Sapolsky, R. M. (2009) The influence of stress hormones on fear circuitry, Annu Rev Neurosci. 32, 289-313.
    18. Tataranni, P. A., Larson, D. E., Snitker, S., Young, J. B., Flatt, J. P. & Ravussin, E. (1996) Effects of glucocorticoids on energy metabolism and food intake in humans, Am J Physiol. 271, E317-25.
    19. Dallman, M. F., Pecoraro, N. C. & la Fleur, S. E. (2005) Chronic stress and comfort foods: self-medication and abdominal obesity, Brain Behav Immun. 19, 275-80.
    20. Spencer, S. J. & Tilbrook, A. (2011) The glucocorticoid contribution to obesity, Stress. 14, 233-46.
    21. Ulrich-Lai, Y. M. & Herman, J. P. (2009) Neural regulation of endocrine and autonomic stress responses, Nat Rev Neurosci. 10, 397-409.
    22. Esler, M., Rumantir, M., Wiesner, G., Kaye, D., Hastings, J. & Lambert, G. (2001) Sympathetic nervous system and insulin resistance: from obesity to diabetes, Am J Hypertens. 14, 304S-309S.
    23. Thorp, A. A. & Schlaich, M. P. (2015) Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome, J Diabetes Res. 2015, 341583.
    24. Hill, M. N., Hellemans, K. G., Verma, P., Gorzalka, B. B. & Weinberg, J. (2012) Neurobiology of chronic mild stress: parallels to major depression, Neurosci Biobehav Rev. 36, 2085-117.
    25. Kessler, R. C. (1997) The effects of stressful life events on depression, Annu Rev Psychol. 48, 191-214.
    26. Willner, P. (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS, Neuropsychobiology. 52, 90-110.
    27. Katz, R. J. (1982) Animal model of depression: pharmacological sensitivity of a hedonic deficit, Pharmacol Biochem Behav. 16, 965-8.
    28. Krishnan, V. & Nestler, E. J. (2008) The molecular neurobiology of depression, Nature. 455, 894-902.
    29. Heshmati, M. & Russo, S. J. (2015) Anhedonia and the brain reward circuitry in depression, Curr Behav Neurosci Rep. 2, 146-153.
    30. Cao, J. L., Covington, H. E., 3rd, Friedman, A. K., Wilkinson, M. B., Walsh, J. J., Cooper, D. C., Nestler, E. J. & Han, M. H. (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action, J Neurosci. 30, 16453-8.
    31. Wong, Y. H., Lee, C. M., Xie, W., Cui, B. & Poo, M. M. (2015) Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin, Proc Natl Acad Sci U S A. 112, E4475-84.
    32. Krishnan, V., Han, M. H., Graham, D. L., Berton, O., Renthal, W., Russo, S. J., Laplant, Q., Graham, A., Lutter, M., Lagace, D. C., Ghose, S., Reister, R., Tannous, P., Green, T. A., Neve, R. L., Chakravarty, S., Kumar, A., Eisch, A. J., Self, D. W., Lee, F. S., Tamminga, C. A., Cooper, D. C., Gershenfeld, H. K. & Nestler, E. J. (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions, Cell. 131, 391-404.
    33. Berton, O., McClung, C. A., Dileone, R. J., Krishnan, V., Renthal, W., Russo, S. J., Graham, D., Tsankova, N. M., Bolanos, C. A., Rios, M., Monteggia, L. M., Self, D. W. & Nestler, E. J. (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress, Science. 311, 864-8.
    34. Sharma, S. & Fulton, S. (2013) Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry, Int J Obes (Lond). 37, 382-9.
    35. Valentine, G. W. & Sanacora, G. (2009) Targeting glial physiology and glutamate cycling in the treatment of depression, Biochem Pharmacol. 78, 431-9.
    36. Kugaya, A. & Sanacora, G. (2005) Beyond monoamines: glutamatergic function in mood disorders, CNS Spectr. 10, 808-19.
    37. Hashimoto, K., Sawa, A. & Iyo, M. (2007) Increased levels of glutamate in brains from patients with mood disorders, Biol Psychiatry. 62, 1310-6.
    38. Popoli, M., Yan, Z., McEwen, B. S. & Sanacora, G. (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission, Nat Rev Neurosci. 13, 22-37.
    39. Williams, N. R. & Schatzberg, A. F. (2016) NMDA antagonist treatment of depression, Curr Opin Neurobiol. 36, 112-7.
    40. Lang, T. & Jahn, R. (2008) Core proteins of the secretory machinery, Handb Exp Pharmacol, 107-27.
    41. Rizo, J. & Rosenmund, C. (2008) Synaptic vesicle fusion, Nat Struct Mol Biol. 15, 665-74.
    42. O'Shea, R. D. (2002) Roles and regulation of glutamate transporters in the central nervous system, Clin Exp Pharmacol Physiol. 29, 1018-23.
    43. Erecinska, M. & Silver, I. A. (1990) Metabolism and role of glutamate in mammalian brain, Prog Neurobiol. 35, 245-96.
    44. Lowy, M. T., Gault, L. & Yamamoto, B. K. (1993) Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus, J Neurochem. 61, 1957-60.
    45. Lowy, M. T., Wittenberg, L. & Yamamoto, B. K. (1995) Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats, J Neurochem. 65, 268-74.
    46. Reznikov, L. R., Grillo, C. A., Piroli, G. G., Pasumarthi, R. K., Reagan, L. P. & Fadel, J. (2007) Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment, Eur J Neurosci. 25, 3109-14.
    47. Bagley, J. & Moghaddam, B. (1997) Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam, Neuroscience. 77, 65-73.
    48. Moghaddam, B. (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia, J Neurochem. 60, 1650-7.
    49. Musazzi, L., Milanese, M., Farisello, P., Zappettini, S., Tardito, D., Barbiero, V. S., Bonifacino, T., Mallei, A., Baldelli, P., Racagni, G., Raiteri, M., Benfenati, F., Bonanno, G. & Popoli, M. (2010) Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants, PloS one. 5, e8566.
    50. Conboy, L. & Sandi, C. (2010) Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoid action, Neuropsychopharmacology. 35, 674-85.
    51. Bagot, R. C., Parise, E. M., Pena, C. J., Zhang, H. X., Maze, I., Chaudhury, D., Persaud, B., Cachope, R., Bolanos-Guzman, C. A., Cheer, J. F., Deisseroth, K., Han, M. H. & Nestler, E. J. (2015) Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression, Nat Commun. 6, 7062.
    52. Biessels, G. J. & Reagan, L. P. (2015) Hippocampal insulin resistance and cognitive dysfunction, Nat Rev Neurosci. 16, 660-71.
    53. Pekny, M., Wilhelmsson, U. & Pekna, M. (2014) The dual role of astrocyte activation and reactive gliosis, Neurosci Lett. 565, 30-8.
    54. Ben Haim, L., Carrillo-de Sauvage, M. A., Ceyzeriat, K. & Escartin, C. (2015) Elusive roles for reactive astrocytes in neurodegenerative diseases, Front Cell Neurosci. 9, 278.
    55. Thaler, J. P., Guyenet, S. J., Dorfman, M. D., Wisse, B. E. & Schwartz, M. W. (2013) Hypothalamic inflammation: marker or mechanism of obesity pathogenesis?, Diabetes. 62, 2629-34.
    56. Allen, N. J. (2014) Astrocyte regulation of synaptic behavior, Annu Rev Cell Dev Biol. 30, 439-63.
    57. Andersson, M. S. & Hanse, E. (2011) Astrocyte-mediated short-term synaptic depression in the rat hippocampal CA1 area: two modes of decreasing release probability, BMC Neurosci. 12, 87.
    58. Ota, Y., Zanetti, A. T. & Hallock, R. M. (2013) The role of astrocytes in the regulation of synaptic plasticity and memory formation, Neural Plast. 2013, 185463.
    59. Chung, W. S., Allen, N. J. & Eroglu, C. (2015) Astrocytes Control Synapse Formation, Function, and Elimination, Cold Spring Harb Perspect Biol. 7, a020370.
    60. Lopez-Bayghen, E. & Ortega, A. (2011) Glial glutamate transporters: new actors in brain signaling, IUBMB Life. 63, 816-23.
    61. Uwechue, N. M., Marx, M. C., Chevy, Q. & Billups, B. (2012) Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes, J Physiol. 590, 2317-31.
    62. Gibbs, M. E., O'Dowd, B. S., Hertz, L., Robinson, S. R., Sedman, G. L. & Ng, K. T. (1996) Inhibition of glutamine synthetase activity prevents memory consolidation, Brain Res Cogn Brain Res. 4, 57-64.
    63. Bechtholt-Gompf, A. J., Walther, H. V., Adams, M. A., Carlezon, W. A., Jr., Ongur, D. & Cohen, B. M. (2010) Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory, Neuropsychopharmacology. 35, 2049-59.
    64. Heo, S., Jung, G., Beuk, T., Hoger, H. & Lubec, G. (2012) Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the Multiple T-maze in C57BL/6J mice, Brain Struct Funct. 217, 363-78.
    65. Medina, A., Burke, S., Thompson, R. C., Bunney, W., Jr., Myers, R. M., Schatzberg, A., Akil, H. & Watson, S. J. (2013) Glutamate transporters: a key piece in the glutamate puzzle of major depressive disorder, J Psychiatr Res. 47, 1150-6.
    66. de Vasconcellos-Bittencourt, A. P., Vendite, D. A., Nassif, M., Crema, L. M., Frozza, R., Thomazi, A. P., Nieto, F. B., Wofchuk, S., Salbego, C., da Rocha, E. R. & Dalmaz, C. (2011) Chronic stress and lithium treatments alter hippocampal glutamate uptake and release in the rat and potentiate necrotic cellular death after oxygen and glucose deprivation, Neurochem Res. 36, 793-800.
    67. Zink, M., Vollmayr, B., Gebicke-Haerter, P. J. & Henn, F. A. (2010) Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression, Neuropharmacology. 58, 465-73.
    68. Belanger, M., Allaman, I. & Magistretti, P. J. (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation, Cell Metab. 14, 724-38.
    69. Bouzier-Sore, A. K. & Pellerin, L. (2013) Unraveling the complex metabolic nature of astrocytes, Front Cell Neurosci. 7, 179.
    70. Rouach, N., Koulakoff, A., Abudara, V., Willecke, K. & Giaume, C. (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission, Science. 322, 1551-5.
    71. Escartin, C. & Rouach, N. (2013) Astroglial networking contributes to neurometabolic coupling, Front Neuroenergetics. 5, 4.
    72. Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H., Magistretti, P. J. & Alberini, C. M. (2011) Astrocyte-neuron lactate transport is required for long-term memory formation, Cell. 144, 810-23.
    73. Carrard, A., Elsayed, M., Margineanu, M., Boury-Jamot, B., Fragniere, L., Meylan, E. M., Petit, J. M., Fiumelli, H., Magistretti, P. J. & Martin, J. L. (2016) Peripheral administration of lactate produces antidepressant-like effects, Mol Psychiatry.
    74. Dallman, M. F., Pecoraro, N. C., La Fleur, S. E., Warne, J. P., Ginsberg, A. B., Akana, S. F., Laugero, K. C., Houshyar, H., Strack, A. M., Bhatnagar, S. & Bell, M. E. (2006) Glucocorticoids, chronic stress, and obesity, Prog Brain Res. 153, 75-105.
    75. Duman, R. S., Aghajanian, G. K., Sanacora, G. & Krystal, J. H. (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants, Nat Med. 22, 238-49.
    76. Tsai, S. F., Chen, P. C., Calkins, M. J., Wu, S. Y. & Kuo, Y. M. (2016) Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle, Front Aging Neurosci. 8, 57.
    77. Hansson, E. & Ronnback, L. (1990) Astrocytes in neurotransmission. A review, Cell Mol Biol. 36, 487-96.
    78. Folch, J., Lees, M. & Sloane Stanley, G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues, J Biol Chem. 226, 497-509.
    79. Golden, S. A., Covington, H. E., 3rd, Berton, O. & Russo, S. J. (2011) A standardized protocol for repeated social defeat stress in mice, Nat Protoc. 6, 1183-91.
    80. Can, A., Dao, D. T., Arad, M., Terrillion, C. E., Piantadosi, S. C. & Gould, T. D. (2012) The mouse forced swim test, J Vis Exp, e3638.
    81. Powell, T. R., Fernandes, C. & Schalkwyk, L. C. (2012) Depression-Related Behavioral Tests, Curr Protoc Mouse Biol. 2, 119-27.
    82. Shih, Y. H., Tsai, S. F., Huang, S. H., Chiang, Y. T., Hughes, M. W., Wu, S. Y., Lee, C. W., Yang, T. T. & Kuo, Y. M. (2016) Hypertension impairs hippocampus-related adult neurogenesis, CA1 neuron dendritic arborization and long-term memory, Neuroscience. 322, 346-57.
    83. Lin, T. W., Shih, Y. H., Chen, S. J., Lien, C. H., Chang, C. Y., Huang, T. Y., Chen, S. H., Jen, C. J. & Kuo, Y. M. (2015) Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice, Neurobiol Learn Mem. 118, 189-97.
    84. Tatem, K. S., Quinn, J. L., Phadke, A., Yu, Q., Gordish-Dressman, H. & Nagaraju, K. (2014) Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases, J Vis Exp, 51785.
    85. Walf, A. A. & Frye, C. A. (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents, Nat Protoc. 2, 322-8.
    86. Makimura, H., Mizuno, T. M., Roberts, J., Silverstein, J., Beasley, J. & Mobbs, C. V. (2000) Adrenalectomy reverses obese phenotype and restores hypothalamic melanocortin tone in leptin-deficient ob/ob mice, Diabetes. 49, 1917-23.
    87. Janani, C. & Ranjitha Kumari, B. D. (2015) PPAR gamma gene--a review, Diabetes Metab Syndr. 9, 46-50.
    88. Fernandez-Marcos, P. J. & Auwerx, J. (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis, Am J Clin Nutr. 93, 884S-90.
    89. Harms, M. & Seale, P. (2013) Brown and beige fat: development, function and therapeutic potential, Nat Med. 19, 1252-63.
    90. Wu, Q., Ortegon, A. M., Tsang, B., Doege, H., Feingold, K. R. & Stahl, A. (2006) FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity, Mol Cell Biol. 26, 3455-67.
    91. Jensen-Urstad, A. P. & Semenkovich, C. F. (2012) Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger?, Biochim Biophys Acta. 1821, 747-53.
    92. Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. (2014) Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism, Annu Rev Nutr. 34, 281-303.
    93. Hudak, C. S. & Sul, H. S. (2013) Pref-1, a gatekeeper of adipogenesis, Front Endocrinol (Lausanne). 4, 79.
    94. Wang, Y., Kim, K. A., Kim, J. H. & Sul, H. S. (2006) Pref-1, a preadipocyte secreted factor that inhibits adipogenesis, J Nutr. 136, 2953-6.
    95. Shih, M. C., Hsu, N. C., Huang, C. C., Wu, T. S., Lai, P. Y. & Chung, B. C. (2008) Mutation of mouse Cyp11a1 promoter caused tissue-specific reduction of gene expression and blunted stress response without affecting reproduction, Mol Endocrinol. 22, 915-23.
    96. Tontonoz, P., Hu, E. & Spiegelman, B. M. (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor, Cell. 79, 1147-56.
    97. Madsen, L., Petersen, R. K. & Kristiansen, K. (2005) Regulation of adipocyte differentiation and function by polyunsaturated fatty acids, Biochim Biophys Acta. 1740, 266-86.
    98. Herrero-Mendez, A., Almeida, A., Fernandez, E., Maestre, C., Moncada, S. & Bolanos, J. P. (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1, Nat Cell Biol. 11, 747-52.
    99. Delzor, A., Escartin, C. & Deglon, N. (2013) Lentiviral vectors: a powerful tool to target astrocytes in vivo, Curr Drug Targets. 14, 1336-46.
    100. Grant, P., Song, J. Y. & Swedo, S. E. (2010) Review of the use of the glutamate antagonist riluzole in psychiatric disorders and a description of recent use in childhood obsessive-compulsive disorder, J Child Adolesc Psychopharmacol. 20, 309-15.
    101. Zarate, C. A., Jr., Payne, J. L., Quiroz, J., Sporn, J., Denicoff, K. K., Luckenbaugh, D., Charney, D. S. & Manji, H. K. (2004) An open-label trial of riluzole in patients with treatment-resistant major depression, Am J Psychiatry. 161, 171-4.
    102. Wang, S. J., Wang, K. Y. & Wang, W. C. (2004) Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes), Neuroscience. 125, 191-201.
    103. Frizzo, M. E., Dall'Onder, L. P., Dalcin, K. B. & Souza, D. O. (2004) Riluzole enhances glutamate uptake in rat astrocyte cultures, Cell Mol Neurobiol. 24, 123-8.
    104. Dall'Igna, O. P., Bobermin, L. D., Souza, D. O. & Quincozes-Santos, A. (2013) Riluzole increases glutamate uptake by cultured C6 astroglial cells, Int J Dev Neurosci. 31, 482-6.
    105. Banasr, M., Chowdhury, G. M., Terwilliger, R., Newton, S. S., Duman, R. S., Behar, K. L. & Sanacora, G. (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole, Mol Psychiatry. 15, 501-11.
    106. Kelly, S. J. & Ismail, M. (2015) Stress and type 2 diabetes: a review of how stress contributes to the development of type 2 diabetes, Annu Rev Public Health. 36, 441-62.
    107. Li, L., Li, X., Zhou, W. & Messina, J. L. (2013) Acute psychological stress results in the rapid development of insulin resistance, J Endocrinol. 217, 175-84.
    108. Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., Sole, J., Nichols, A., Ross, J. S., Tartaglia, L. A. & Chen, H. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, J Clin Invest. 112, 1821-30.
    109. Dandona, P., Aljada, A. & Bandyopadhyay, A. (2004) Inflammation: the link between insulin resistance, obesity and diabetes, Trends Immunol. 25, 4-7.
    110. Kinsey, S. G., Bailey, M. T., Sheridan, J. F. & Padgett, D. A. (2008) The inflammatory response to social defeat is increased in older mice, Physiol Behav. 93, 628-36.
    111. Lehmann, M. L., Cooper, H. A., Maric, D. & Herkenham, M. (2016) Social defeat induces depressive-like states and microglial activation without involvement of peripheral macrophages, J Neuroinflammation. 13, 224.
    112. Powell, N. D., Sloan, E. K., Bailey, M. T., Arevalo, J. M., Miller, G. E., Chen, E., Kobor, M. S., Reader, B. F., Sheridan, J. F. & Cole, S. W. (2013) Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis, Proc Natl Acad Sci U S A. 110, 16574-9.
    113. Boyle, L. M. (2013) A neuroplasticity hypothesis of chronic stress in the basolateral amygdala, Yale J Biol Med. 86, 117-25.
    114. Geer, E. B., Islam, J. & Buettner, C. (2014) Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism, Endocrinol Metab Clin North Am. 43, 75-102.
    115. Livingstone, D. E., Jones, G. C., Smith, K., Jamieson, P. M., Andrew, R., Kenyon, C. J. & Walker, B. R. (2000) Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats, Endocrinology. 141, 560-3.
    116. Julius, S. & Valentini, M. (1998) Consequences of the increased autonomic nervous drive in hypertension, heart failure and diabetes, Blood Press Suppl. 3, 5-13.
    117. Nonogaki, K. (2000) New insights into sympathetic regulation of glucose and fat metabolism, Diabetologia. 43, 533-49.
    118. Puschel, G. P. (2004) Control of hepatocyte metabolism by sympathetic and parasympathetic hepatic nerves, Anat Rec A Discov Mol Cell Evol Biol. 280, 854-67.
    119. Shimomura, Y., Bray, G. A. & Lee, M. (1987) Adrenalectomy and steroid treatment in obese (ob/ob) and diabetic (db/db) mice, Horm Metab Res. 19, 295-9.
    120. Vilsboll, T., Krarup, T., Sonne, J., Madsbad, S., Volund, A., Juul, A. G. & Holst, J. J. (2003) Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus, J Clin Endocrinol Metab. 88, 2706-13.
    121. Hauner, H., Glatting, G., Kaminska, D. & Pfeiffer, E. F. (1988) Effects of gastric inhibitory polypeptide on glucose and lipid metabolism of isolated rat adipocytes, Ann Nutr Metab. 32, 282-8.
    122. Oben, J., Morgan, L., Fletcher, J. & Marks, V. (1991) Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue, J Endocrinol. 130, 267-72.
    123. Kim, S. J., Nian, C. & McIntosh, C. H. (2007) Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes, J Biol Chem. 282, 34139-47.
    124. Hansotia, T., Maida, A., Flock, G., Yamada, Y., Tsukiyama, K., Seino, Y. & Drucker, D. J. (2007) Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure, J Clin Invest. 117, 143-52.
    125. Nasteska, D., Harada, N., Suzuki, K., Yamane, S., Hamasaki, A., Joo, E., Iwasaki, K., Shibue, K., Harada, T. & Inagaki, N. (2014) Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions, Diabetes. 63, 2332-43.
    126. Miyawaki, K., Yamada, Y., Ban, N., Ihara, Y., Tsukiyama, K., Zhou, H., Fujimoto, S., Oku, A., Tsuda, K., Toyokuni, S., Hiai, H., Mizunoya, W., Fushiki, T., Holst, J. J., Makino, M., Tashita, A., Kobara, Y., Tsubamoto, Y., Jinnouchi, T., Jomori, T. & Seino, Y. (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity, Nat Med. 8, 738-42.
    127. Irwin, N., McClean, P. L., O'Harte, F. P., Gault, V. A., Harriott, P. & Flatt, P. R. (2007) Early administration of the glucose-dependent insulinotropic polypeptide receptor antagonist (Pro3)GIP prevents the development of diabetes and related metabolic abnormalities associated with genetically inherited obesity in ob/ob mice, Diabetologia. 50, 1532-40.
    128. Bates, H. E., Campbell, J. E., Ussher, J. R., Baggio, L. L., Maida, A., Seino, Y. & Drucker, D. J. (2012) Gipr is essential for adrenocortical steroidogenesis; however, corticosterone deficiency does not mediate the favorable metabolic phenotype of Gipr(-/-) mice, Diabetes. 61, 40-8.
    129. Smas, C. M., Chen, L., Zhao, L., Latasa, M. J. & Sul, H. S. (1999) Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation, J Biol Chem. 274, 12632-41.
    130. Smas, C. M., Kachinskas, D., Liu, C. M., Xie, X., Dircks, L. K. & Sul, H. S. (1998) Transcriptional control of the pref-1 gene in 3T3-L1 adipocyte differentiation. Sequence requirement for differentiation-dependent suppression, J Biol Chem. 273, 31751-8.
    131. Hishida, T., Nishizuka, M., Osada, S. & Imagawa, M. (2009) The role of C/EBPdelta in the early stages of adipogenesis, Biochimie. 91, 654-7.
    132. Darlington, G. J., Ross, S. E. & MacDougald, O. A. (1998) The role of C/EBP genes in adipocyte differentiation, J Biol Chem. 273, 30057-60.
    133. Guillemot-Legris, O., Masquelier, J., Everard, A., Cani, P. D., Alhouayek, M. & Muccioli, G. G. (2016) High-fat diet feeding differentially affects the development of inflammation in the central nervous system, J Neuroinflammation. 13, 206.
    134. Gzielo, K., Kielbinski, M., Ploszaj, J., Janeczko, K., Gazdzinski, S. P. & Setkowicz, Z. (2017) Long-Term Consumption of High-Fat Diet in Rats: Effects on Microglial and Astrocytic Morphology and Neuronal Nitric Oxide Synthase Expression, Cell Mol Neurobiol. 37, 783-789.
    135. Cano, V., Valladolid-Acebes, I., Hernandez-Nuno, F., Merino, B., Del Olmo, N., Chowen, J. A. & Ruiz-Gayo, M. (2014) Morphological changes in glial fibrillary acidic protein immunopositive astrocytes in the hippocampus of dietary-induced obese mice, Neuroreport. 25, 819-822.
    136. Boitard, C., Etchamendy, N., Sauvant, J., Aubert, A., Tronel, S., Marighetto, A., Laye, S. & Ferreira, G. (2012) Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice, Hippocampus. 22, 2095-100.
    137. Hwang, L. L., Wang, C. H., Li, T. L., Chang, S. D., Lin, L. C., Chen, C. P., Chen, C. T., Liang, K. C., Ho, I. K., Yang, W. S. & Chiou, L. C. (2010) Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice, Obesity (Silver Spring). 18, 463-9.
    138. Sullivan, G. M. & Feinn, R. (2012) Using Effect Size-or Why the P Value Is Not Enough, J Grad Med Educ. 4, 279-82.
    139. Spear, L. P. (2000) The adolescent brain and age-related behavioral manifestations, Neurosci Biobehav Rev. 24, 417-63.
    140. Tsai, S. F., Huang, T. Y., Chang, C. Y., Hsu, Y. C., Chen, S. J., Yu, L., Kuo, Y. M. & Jen, C. J. (2014) Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats, Front Behav Neurosci. 8, 27.
    141. Valladolid-Acebes, I., Merino, B., Principato, A., Fole, A., Barbas, C., Lorenzo, M. P., Garcia, A., Del Olmo, N., Ruiz-Gayo, M. & Cano, V. (2012) High-fat diets induce changes in hippocampal glutamate metabolism and neurotransmission, Am J Physiol Endocrinol Metab. 302, E396-402.
    142. Zemdegs, J., Quesseveur, G., Jarriault, D., Penicaud, L., Fioramonti, X. & Guiard, B. P. (2016) High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice, Br J Pharmacol. 173, 2095-110.
    143. Almeida-Suhett, C. P., Graham, A., Chen, Y. & Deuster, P. (2017) Behavioral changes in male mice fed a high-fat diet are associated with IL-1beta expression in specific brain regions, Physiol Behav. 169, 130-140.
    144. Gainey, S. J., Kwakwa, K. A., Bray, J. K., Pillote, M. M., Tir, V. L., Towers, A. E. & Freund, G. G. (2016) Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide, Front Behav Neurosci. 10, 156.

    下載圖示 校內:2019-08-01公開
    校外:2019-08-01公開
    QR CODE