簡易檢索 / 詳目顯示

研究生: 張兆良
Chang, Chao-liang
論文名稱: 開發靈敏性扣鎖探針作為第一型人類後天免疫缺乏病毒之診斷工具
Development of a sensitive padlock probe as a diagnostic tool to detect the HIV-1
指導教授: 王憲威
Wang, Shainn-Wei
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 111
中文關鍵詞: 病毒檢測扣鎖探針愛滋病
外文關鍵詞: HIV, padlock probe
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類愛滋病病毒從發現至今已造成全球逾兩千五百萬人的死亡。為有效地追蹤疫情,則必須仰賴靈敏性更高的病毒檢測工具,投入例行的診斷、流行病學上的監控與病源的篩選分析。然而,現行檢測工具的弊病仍有:昂貴的價格成本、技術不夠迅速、方法不夠專門直接、檢體需求過多等因素。再者,新生兒檢體中若帶有母源性抗體或是檢體的病毒量或專一性不足,不但會干擾檢測,還會使篩選及確認感染的更加繁瑣與費工。臨床診測工具若無法兼顧精確度低和便利性,則很可能耽誤初期感染及新生兒感染的判定與診治,甚至影響到HAART病患的預後與體內病毒數的追蹤。“扣鎖探針”為一種新型態的核酸診測工具,於先前已成功的被應用於病毒RNA的診測以及準確的在人類基因體研究中診測出專一的SNP。由於諸篇研究證實了此探針兼具優異的專一性與靈敏性,因此極有潛力發展成準確度高且專門直接的診測法。在本篇研究中,我們報告人工合成的扣鎖探針應用於HIV診測的研發,利用它與保守的目標序列進行互補辨識並雜合至目標序列,此探針可被黏合催化成環型的結構,並在後續的恆溫滾式環形擴增反應(RCA)中,擴增出以100bp為倍數的梯狀診測訊號,是放大HIV感染訊息作為診測的絕佳策略。藉由比對大量的病毒株序列,我們根據坐落於LTR區域的保守序列,設計出兩個不同目標序列的探針。其中,PLP-2LTR可特別偵測出病毒的2-LTR環形產物; PLP-R則可藉偵測病毒RNA或DNA的R區域來判斷感染。經驗證,我們發現PLP-2LTR有優於PLP-R的診測靈敏度,但卻有非專一性的訊號干擾於診測中產生。因此,在應用生物素標幟探針(bio-PLP-2LTR)與磁珠來進行核酸純化後,我們成功地克服了扣鎖探針的雜訊干擾,也將病毒的診測極限突破至2個微量的病毒個體。但是目前扣鎖探針的診測仍尚具進化改良的空間。藉多重生物素的標幟的增加,可藉強化結合力而可以穩定呈現訊號,扣鎖探針也更可能有機會因此而運用於定量的檢測訊號。總體而言,本研究證實了扣鎖探針極具診測病毒感染的潛力。且扣鎖探針未來於臨床診測的運用更值得進一步的探索。

    Human immunodeficiency virus (HIV) infection has resulted in more than 25 million deaths worldwide since its discovery. To effective track the disease, highly sensitive HIV detection tools are required for routine diagnosis, epidemiologic surveillance, and donor screening. However, current tools are not necessary to be cheap, rapid and static methods of accuracy, and may require a large amount of blood and/or repeated tissue biopsies. Screening and confirmation of HIV infection may also become laborious and problematic, particularly to specimens with preexisting maternal antibodies or minimized viral loads and specificity. Tools show limited precisions or convenience in practice thus may detain the detection of neonatal infection and fail to discriminate newly infections or monitor the viral loads of retroviral drug-treated adults. As molecular padlock probes (PLPs) based nucleic acid detection approach has innovative applications in localizing and signify pathogenic nucleic acids, especially in the detection of many viral RNA and human SNPs with extream specificity, it may have great potential to be developed into a static and accurate method for HIV infection. We report here the development of a synthetic PLP, combining with ligation-based recognition and isothermal rolling circle amplification (RCA) by Bst polymerase, as a strategy to signify HIV infection. By sequence alignments of HIV-1 strains from the LosAlamos Database, two PLPs were initially designed for the detection of HIV-1 conserved region in the long terminal repeat (LTR): (1) PLP-2LTR: targeting to conserved junctions of native 2LTR DNA circles; (2) PLP-R: targeting to the R regions to detect viral RNA or DNA. As these PLPs contained both ends complimentary to the targeted DNA or RNA target, which upon hybridization and ligation, they were expected to form un-nicked circles and can be amplified by Bst into 100 bp ladders. Our result indicates that PLP-2LTR was more sensitive than PLP-R for HIV detection, but non-specific amplification effects of these two PLPs were observed. After further improvement on the probe design and purification procedues, we found that the use of a biotinyl PLP-2LTR (bio-PLP-2LTR) in an implemented beads purification procedure enhanced the detection limit to 2 copies of DNA targets without confusing noises. However, the amplification signal was unstable and independent to the dosage of DNA template, presumably due to inconsistent association of the beads to the mono-labeled bio-PLP-2LTR. This preliminary study demonstrates the potential of a biotinyl PLP-2LTR for HIV-1 infection. Modifications of the bio-PLP-2LTR for clinical diagnoses are discussed and warrant further exploration.

    考試合格證明.........................................I 中文摘要.............................................II 英文摘要.............................................III 致謝.................................................V 目錄.................................................VI 表目錄...............................................X 圖目錄...............................................XI 附錄.................................................XII 符號及縮寫...........................................XIII 緒論.................................................1 一、研究動機.........................................1 二、愛滋病流行病學與分類學研究.......................2 三、愛滋病病毒生活史與感染...........................6 1.結合與侵入(binding and penetration)................7 2.脫鞘與反轉錄(uncoating and retrotranscription).....7 3.入核、嵌插與2-LTR DNA的產生 (nuclear import, integration and the formation of episomal 2-LTR).................9 4.轉錄與轉譯調控(regulations of transcription and translation).........................................11 5.核酸包裝、病毒組裝與出芽(RNA packaging, assembly and budding).............................................12 6.蛋白切割與熟化作用 (processing by viral protease and virion maturation)...................................12 四、現行檢測方式與改善目標...........................13 五、扣鎖探針原理與應用...............................16 1.扣鎖探針應用於單核酸多型性分析與原位雜合...........18 2.扣鎖探針應用於微矩陣與多重檢測.....................18 3.扣鎖探針應用於RNA分析..............................19 4.扣鎖探針應用於致病性感染診測.......................20 六、實驗目標.........................................21 實驗材料與方法.......................................23 一、愛滋病病毒分離株序列資料收集.....................23 二、愛滋病病毒分離株序列比對.........................23 三、辨識目標區選擇與扣鎖探針設計.....................23 四、標準目標質體的質體構築與保存方式.................24 五、DNA電泳分析......................................26 六、DNA序列分析......................................26 七、質體DNA抽取與定量................................27 八、磷酸激反應.....................................28 九、聚合連鎖反應(PCR)..............................28 十、扣鎖探針最佳使用量調整...........................28 十一、扣鎖探針檢測...................................29 1.黏合反應(ligation).................................29 2.外切反應(DNA exonuclease reaction)...............31 3.探針純化...........................................31 4.訊號擴增...........................................34 十二、試劑...........................................35 結果.................................................37 一、設計扣鎖探針.....................................37 1.HIV基因保守區域的分析..............................37 2.扣鎖探針可行性的探討...............................38 3.標準目標質體的質體構築.............................40 二、調整合適的主反應條件.............................40 1.扣鎖探針適用量的探討...............................41 2.扣鎖探針純度對於偵測的探討.........................41 3.分析不同黏合於黏合反應的適用性...................42 4.分析不同聚合於訊號擴增的適用性...................43 5.RCA/HyB訊號擴增反應最佳化..........................44 三、探討核酸純化技術對於探針的改善...................49 1.探討生物素結合磁珠純化對於診測的適用性.............49 2.探討betaine於訊號擴增反應的適用性..................51 3.探討增加引子專一性於訊號擴增反應的影響.............51 4.扣鎖探針與聚合連鎖反應於診測的比較...............52 5.探討扣鎖探針診測的專一性...........................53 四、應用扣鎖探針於感染模式中進行檢測.................53 討論.................................................55 參考文獻.............................................62 圖...................................................77 表...................................................95 附錄.................................................104 自述.................................................111

    1. Adamson C., Jones I. (2004) The molecular basis of hiv capsid assembly—five years of progress. Reviews in Medical Virology 14(2): 107-21.
    2. Aledort J. E., Ronald A., et al. (2006) Reducing the burden of hiv/aids in infants: The contribution of improved diagnostics. Nature 444 Suppl 1: 19-28.
    3. Alhassan A., Thekisoe O. M., et al. (2007) Development of loop-mediated isothermal amplification (lamp) method for diagnosis of equine piroplasmosis. Vet Parasitol 143(2): 155-60.
    4. Antson D. O., Mendel-Hartvig M., et al. (2003) Pcr-generated padlock probes distinguish homologous chromosomes through quantitative fluorescence analysis. Eur J Hum Genet 11(5): 357-63.
    5. Ao Z., Huang G., et al. (2007) Interaction of human immunodeficiency virus type 1 integrase with cellular nuclear import receptor importin 7 and its impact on viral replication. J Biol Chem 282(18): 13456-67.
    6. Bakht S., Qi X. (2005) Ligation-mediated rolling-circle amplification-based approaches to single nucleotide polymorphism detection. Expert Rev Mol Diagn 5(1): 111-6.
    7. Balog K., Minarovits J. (2006) Nef: A pleiotropic modulator of primate lentivirus infectivity and pathogenesis. Acta Microbiol Immunol Hung 53(1): 51-75.
    8. Baltimore D. (1971) Expression of animal virus genomes. Bacteriol Rev 35(3): 235-41.
    9. Baner J., Gyarmati P., et al. (2007) Microarray-based molecular detection of foot-and-mouth disease, vesicular stomatitis and swine vesicular disease viruses, using padlock probes. J Virol Methods 143(2): 200-6.
    10. Baner J., Isaksson A., et al. (2003) Parallel gene analysis with allele-specific padlock probes and tag microarrays. Nucleic Acids Res 31(17): e103.
    11. Baner J., Marits P., et al. (2005) Analysis of t-cell receptor v beta gene repertoires after immune stimulation and in malignancy by use of padlock probes and microarrays. Clin Chem 51(4): 768-75.
    12. Baner J., Nilsson M., et al. (2001) More keys to padlock probes: Mechanisms for high-throughput nucleic acid analysis. Curr Opin Biotechnol 12(1): 11-5.
    13. Baner J., Nilsson M., et al. (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26(22): 5073-8.
    14. Barre-Sinoussi F., Chermann J. C., et al. (1983) Isolation of a t-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (aids). Science 220(4599): 868-71.
    15. Beck I. A., Mahalanabis M., et al. (2002) Rapid and sensitive oligonucleotide ligation assay for detection of mutations in human immunodeficiency virus type 1 associated with high-level resistance to protease inhibitors. J Clin Microbiol 40(4): 1413-9.
    16. Besmer P., Miller R. C., Jr., et al. (1972) Studies on polynucleotides. Cxvii. Hybridization of polydeoxynucleotides with tyrosine transfer rna sequences to the r-strand of phi80psu + 3 DNA. J Mol Biol 72(3): 503-22.
    17. Bombarda E., Cherradi H., et al. (2002) Zn(2+) binding properties of single-point mutants of the c-terminal zinc finger of the hiv-1 nucleocapsid protein: Evidence of a critical role of cysteine 49 in zn(2+) dissociation. Biochemistry 41(13): 4312-20.
    18. Bozzette S. A., McCutchan J. A., et al. (1993) A cross-sectional comparison of persons with syncytium- and non-syncytium-inducing human immunodeficiency virus. J Infect Dis 168(6): 1374-9.
    19. Briggs D. R., Tuttle D. L., et al. (2000) Envelope v3 amino acid sequence predicts hiv-1 phenotype (co-receptor usage and tropism for macrophages). AIDS 14(18): 2937-9.
    20. Brumme Z. L., Dong W. W., et al. (2004) Clinical and immunological impact of hiv envelope v3 sequence variation after starting initial triple antiretroviral therapy. AIDS 18(4): F1-9.
    21. Brussel A., Mathez D., et al. (2003) Longitudinal monitoring of 2-long terminal repeat circles in peripheral blood mononuclear cells from patients with chronic hiv-1 infection. AIDS 17(5): 645-52.
    22. Bullard D. R., Bowater R. P. (2006) Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage t4. Biochem J 398(1): 135-44.
    23. Burniston M. T., Cimarelli A., et al. (1999) Human immunodeficiency virus type 1 gag polyprotein multimerization requires the nucleocapsid domain and rna and is promoted by the capsid-dimer interface and the basic region of matrix protein. J Virol 73(10): 8527-40.
    24. Bushman F. D. (1999) Host proteins in retroviral cdna integration. Adv Virus Res 52: 301-17.
    25. Butler S. L., Hansen M. S., et al. (2001) A quantitative assay for hiv DNA integration in vivo. Nat Med 7(5): 631-4.
    26. Butler S. L., Johnson E. P., et al. (2002) Human immunodeficiency virus cdna metabolism: Notable stability of two-long terminal repeat circles. J Virol 76(8): 3739-47.
    27. Cara A., Cereseto A., et al. (1996) Hiv-1 protein expression from synthetic circles of DNA mimicking the extrachromosomal forms of viral DNA. J Biol Chem 271(10): 5393-7.
    28. Cardozo T., Kimura T., et al. (2007) Structural basis for coreceptor selectivity by the hiv type 1 v3 loop. AIDS Res Hum Retroviruses 23(3): 415-26.
    29. Carr J. M., Coolen C., et al. (2008) Human immunodeficiency virus 1 (hiv-1) virion infectivity factor (vif) is part of reverse transcription complexes and acts as an accessory factor for reverse transcription. Virology 372(1): 147-56.
    30. Carteau S., Batson S. C., et al. (1997) Human immunodeficiency virus type 1 nucleocapsid protein specifically stimulates mg2+-dependent DNA integration in vitro. J Virol 71(8): 6225-9.
    31. CDC. Hiv testing. http://www.cdc.gov/hiv/topics/basic/
    32. Charneau P., Borman A. M., et al. (1994) Isolation and envelope sequence of a highly divergent hiv-1 isolate: Definition of a new hiv-1 group. Virology 205(1): 247-53.
    33. Chatterji U., Bobardt M. D., et al. (2006) Trim5alpha accelerates degradation of cytosolic capsid associated with productive hiv-1 entry. J Biol Chem 281(48): 37025-33.
    34. Chersich M. F., Luchters S. M., et al. (2008) Hiv testing and counselling for women attending child health clinics: An opportunity for entry to prevent mother-to-child transmission and hiv treatment. Int J STD AIDS 19(1): 42-6.
    35. Christian A. T., Pattee M. S., et al. (2001) Detection of DNA point mutations and mrna expression levels by rolling circle amplification in individual cells. Proc Natl Acad Sci U S A 98(25): 14238-43.
    36. Clavel F., Guetard D., et al. (1986) Isolation of a new human retrovirus from west african patients with aids. Science 233(4761): 343-6.
    37. Coakley E., Petropoulos C. J., et al. (2005) Assessing chemokine co-receptor usage in hiv. Curr Opin Infect Dis 18(1): 9-15.
    38. D'Aquila R. T., Johnson V. A., et al. (1995) Zidovudine resistance and hiv-1 disease progression during antiretroviral therapy. Aids clinical trials group protocol 116b/117 team and the virology committee resistance working group. Ann Intern Med 122(6): 401-8.
    39. Dahl F., Baner J., et al. (2004) Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci U S A 101(13): 4548-53.
    40. Dahl F., Gullberg M., et al. (2005) Multiplex amplification enabled by selective circularization of large sets of genomic DNA fragments. Nucleic Acids Res 33(8): e71.
    41. David S., Abbas-Chorfa F., et al. (2008) Promotion of who feeding recommendations: A model evaluating the effects on hiv-free survival in african children. J Hum Lact 24(2): 140-9.
    42. De Cock K. M., Fowler M. G., et al. (2000) Prevention of mother-to-child hiv transmission in resource-poor countries: Translating research into policy and practice. JAMA 283(9): 1175-82.
    43. De Leys R., Vanderborght B., et al. (1990) Isolation and partial characterization of an unusual human immunodeficiency retrovirus from two persons of west-central african origin. J Virol 64(3): 1207-16.
    44. De Rijck J., Debyser Z. (2006) The central DNA flap of the human immunodeficiency virus type 1 is important for viral replication. Biochem Biophys Res Commun 349(3): 1100-10.
    45. Dickover R. E., Garratty E. M., et al. (1996) Identification of levels of maternal hiv-1 rna associated with risk of perinatal transmission. Effect of maternal zidovudine treatment on viral load. JAMA 275(8): 599-605.
    46. Ding X., Zhang Y., et al. (2007) Use of rolling-circle amplification for large-scale yeast two-hybrid analyses. METHODS IN MOLECULAR BIOLOGY-CLIFTON THEN TOTOWA- 354: 85.
    47. Dismuke D. J., Aiken C. (2006) Evidence for a functional link between uncoating of the human immunodeficiency virus type 1 core and nuclear import of the viral preintegration complex. J Virol 80(8): 3712-20.
    48. Doms R. W., Moore J. P. in Human retroviruses and aids 1997: A compilation and analysis of nucleic acid and amino acid sequences (eds. B., K., et al.) (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 1997).
    49. Dvorin J. D., Malim M. H. (2003) Intracellular trafficking of hiv-1 cores: Journey to the center of the cell. Curr Top Microbiol Immunol 281: 179-208.
    50. Ellis J., Bernstein A. (1989) Retrovirus vectors containing an internal attachment site: Evidence that circles are not intermediates to murine retrovirus integration. J Virol 63(6): 2844-6.
    51. Este J. A., Telenti A. (2007) Hiv entry inhibitors. Lancet 370(9581): 81-8.
    52. FDA. Donor screening assays for infectious agents and hiv diagnostic assays. http://www.fda.gov/cber/products/testkits.htm
    53. Finzi D., Blankson J., et al. (1999) Latent infection of cd4+ t cells provides a mechanism for lifelong persistence of hiv-1, even in patients on effective combination therapy. Nat Med 5(5): 512-7.
    54. Fischer M., Trkola A., et al. (2003) Shifts in cell-associated hiv-1 rna but not in episomal hiv-1 DNA correlate with new cycles of hiv-1 infection in vivo. Antivir Ther 8(2): 97-104.
    55. Fouchier R. A., Meyer B. E., et al. (1998) Interaction of the human immunodeficiency virus type 1 vpr protein with the nuclear pore complex. J Virol 72(7): 6004-13.
    56. Frackman S., Kobs G., et al. (1998) Betaine and dmso: Enhancing agents for pcr. Promega Notes 65(27-29): 27-9.
    57. Fraiser M., Spargo C., et al. (EP Patent 0,684,315, 1995).
    58. Furtado M. R., Callaway D. S., et al. (1999) Persistence of hiv-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N Engl J Med 340(21): 1614-22.
    59. Gallo R. C., Sarin P. S., et al. (1983) Isolation of human t-cell leukemia virus in acquired immune deficiency syndrome (aids). Science 220(4599): 865-7.
    60. Gao F., Bailes E., et al. (1999) Origin of hiv-1 in the chimpanzee pan troglodytes troglodytes. Nature 397(6718): 436-41.
    61. Garrido C., Roulet V., et al. (2008) Evaluation of eight different bioinformatics tools to predict viral tropism in different human immunodeficiency virus type 1 subtypes. J Clin Microbiol 46(3): 887-91.
    62. Goncalves J., Korin Y., et al. (1996) Role of vif in human immunodeficiency virus type 1 reverse transcription. J Virol 70(12): 8701-9.
    63. Gyarmati P., Conze T., et al. (2008) Simultaneous genotyping of all hemagglutinin and neuraminidase subtypes of avian influenza viruses by use of padlock probes. J Clin Microbiol 46(5): 1747-51.
    64. Harada S., Koyanagi Y., et al. (1985) Infection of htlv-iii/lav in htlv-i-carrying cells mt-2 and mt-4 and application in a plaque assay. Science 229(4713): 563-6.
    65. Hardenbol P., Baner J., et al. (2003) Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 21(6): 673-8.
    66. Hardenbol P., Yu F., et al. (2005) Highly multiplexed molecular inversion probe genotyping: Over 10,000 targeted snps genotyped in a single tube assay. Genome Res 15(2): 269-75.
    67. Hoffmann C., Rockstroh J. K., et al. Hiv medicine 2007 (Flying Publisher, 2007).
    68. Hong T., Drlica K., et al. (1991) Circular DNA of human immunodeficiency virus: Analysis of circle junction nucleotide sequences. J Virol 65(1): 551-5.
    69. Housby J. N., Thorbjarnardottir S. H., et al. (2000) Optimised ligation of oligonucleotides by thermal ligases: Comparison of thermus scotoductus and rhodothermus marinus DNA ligases to other thermophilic ligases. Nucleic Acids Res 28(3): E10.
    70. Hughes M. D., Johnson V. A., et al. (1997) Monitoring plasma hiv-1 rna levels in addition to cd4+ lymphocyte count improves assessment of antiretroviral therapeutic response. Actg 241 protocol virology substudy team. Ann Intern Med 126(12): 929-38.
    71. Iordanskiy S., Berro R., et al. (2006) Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin. Retrovirology 3: 4.
    72. Jeanson L., Mouscadet J. F. (2002) Ku represses the hiv-1 transcription: Identification of a putative ku binding site homologous to the mouse mammary tumor virus nre1 sequence in the hiv-1 long terminal repeat. J Biol Chem 277(7): 4918-24.
    73. Jeanson L., Subra F., et al. (2002) Effect of ku80 depletion on the preintegrative steps of hiv-1 replication in human cells. Virology 300(1): 100-8.
    74. Jonstrup S. P., Koch J., et al. (2006) A microrna detection system based on padlock probes and rolling circle amplification. RNA 12(9): 1747-52.
    75. Kalin I., Shephard S., et al. (1992) Evaluation of the ligase chain reaction (lcr) for the detection of point mutations. Mutat Res 283(2): 119-23.
    76. Kao S., Akari H., et al. (2003) Human immunodeficiency virus type 1 vif is efficiently packaged into virions during productive but not chronic infection. J Virol 77(2): 1131-40.
    77. Kaocharoen S., Wang B., et al. (2008) Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the cryptococcus species complex. Electrophoresis 29(15): 3183-91.
    78. Kato H., Yoshida A., et al. (2007) Loop-mediated isothermal amplification method for the rapid detection of enterococcus faecalis in infected root canals. Oral Microbiol Immunol 22(2): 131-5.
    79. Khiytani D. K., Dimmock N. J. (2002) Characterization of a human immunodeficiency virus type 1 pre-integration complex in which the majority of the cdna is resistant to dnase i digestion. J Gen Virol 83(Pt 10): 2523-32.
    80. Kilzer J. M., Stracker T., et al. (2003) Roles of host cell factors in circularization of retroviral dna. Virology 314(1): 460-7.
    81. Kong F., Tong Z., et al. (2008) Rapid identification and differentiation of trichophyton species, based on sequence polymorphisms of the ribosomal internal transcribed spacer regions, by rolling-circle amplification. J Clin Microbiol 46(4): 1192-9.
    82. Kuhn H., Frank-Kamenetskii M. D. (2005) Template-independent ligation of single-stranded DNA by t4 DNA ligase. FEBS J 272(23): 5991-6000.
    83. Laguette N., Benichou S., et al. (2009) Human immunodeficiency virus type 1 nef incorporation into virions does not increase infectivity. J Virol 83(2): 1093-104.
    84. Landegren U., Kaiser R., et al. (1988) A ligase-mediated gene detection technique. Science 241(4869): 1077-80.
    85. Larsson C., Koch J., et al. (2004) In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat Methods 1(3): 227-32.
    86. Lavallee C., Yao X. J., et al. (1994) Requirement of the pr55gag precursor for incorporation of the vpr product into human immunodeficiency virus type 1 viral particles. J Virol 68(3): 1926-34.
    87. Levy J. A. (2006) Hiv pathogenesis: Knowledge gained after two decades of research. Adv Dent Res 19(1): 10-6.
    88. Li L., Yoder K., et al. (2000) Retroviral cdna integration: Stimulation by hmg i family proteins. J Virol 74(23): 10965-74.
    89. Li M., Mizuuchi M., et al. (2006) Retroviral DNA integration: Reaction pathway and critical intermediates. EMBO J 25(6): 1295-304.
    90. Lizardi P. M., Huang X., et al. (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19(3): 225-32.
    91. Lobel L. I., Murphy J. E., et al. (1989) The palindromic ltr-ltr junction of moloney murine leukemia virus is not an efficient substrate for proviral integration. J Virol 63(6): 2629-37.
    92. Lu Y. L., Bennett R. P., et al. (1995) A leucine triplet repeat sequence (lxx)4 in p6gag is important for vpr incorporation into human immunodeficiency virus type 1 particles. J Virol 69(11): 6873-9.
    93. Mansky L. M. (1996) The mutation rate of human immunodeficiency virus type 1 is influenced by the vpr gene. Virology 222(2): 391-400.
    94. Marciniak J., Kummel A., et al. (2008) Coupled rolling circle amplification loop-mediated amplification for rapid detection of short DNA sequences. Biotechniques 45(3): 275-80.
    95. Marsolais G., Dubuc R., et al. (1994) Importance of primer selection in the application of pcr technology to the diagnosis of bovine leukemia virus. J Vet Diagn Invest 6(3): 297-301.
    96. Martinez M. A., Cabana M., et al. (1999) Human immunodeficiency virus type 1 genetic evolution in patients with prolonged suppression of plasma viremia. Virology 256(2): 180-7.
    97. McCarthy E. L., Egeler T. J., et al. (2006) Detection and identification of ihn and isa viruses by isothermal DNA amplification in microcapillary tubes. Anal Bioanal Chem 386(7-8): 1975-84.
    98. McClure M. O., Marsh M., et al. (1988) Human immunodeficiency virus infection of cd4-bearing cells occurs by a ph-independent mechanism. EMBO J 7(2): 513-8.
    99. McDermott J. L., Martini I., et al. (2005) Decay of human immunodeficiency virus type 1 unintegrated DNA containing two long terminal repeats in infected individuals after 3 to 8 years of sustained control of viremia. J Clin Microbiol 43(10): 5272-4.
    100. McDonald D., Vodicka M. A., et al. (2002) Visualization of the intracellular behavior of hiv in living cells. J Cell Biol 159(3): 441-52.
    101. Melikyan G. B., Markosyan R. M., et al. (2000) Evidence that the transition of hiv-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 151(2): 413-23.
    102. Millard P. J., Bickerstaff L. E., et al. (2006) Detection of infectious haematopoietic necrosis virus and infectious salmon anaemia virus by molecular padlock amplification. J Fish Dis 29(4): 201-13.
    103. Miyoshi I., Kubonishi I., et al. (1981) Type c virus particles in a cord t-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic t cells. Nature 294(5843): 770-1.
    104. Mofenson L. M., McIntyre J. A. (2000) Advances and research directions in the prevention of mother-to-child hiv-1 transmission. Lancet 355(9222): 2237-44.
    105. Mora J. R., Getts R. C. (2007) High-sensitivity detection methods for low-abundance rna species: Applications for functional genomics research. Expert Rev Mol Diagn 7(6): 775-85.
    106. Morikawa Y., Hockley D. J., et al. (2000) Roles of matrix, p2, and n-terminal myristoylation in human immunodeficiency virus type 1 gag assembly. J Virol 74(1): 16-23.
    107. Morlese J., Teo I. A., et al. (2003) Identification of two mutually exclusive groups after long-term monitoring of hiv DNA 2-ltr circle copy number in patients on haart. AIDS 17(5): 679-83.
    108. Mukherjee J. S., Farmer P. E., et al. (2003) Tackling hiv in resource poor countries. BMJ 327(7423): 1104-6.
    109. Munoz-Nieto M., Perez-Alvarez L., et al. (2008) Hiv type 1 intersubtype recombinants during the evolution of a dual infection with subtypes b and g. AIDS Res Hum Retroviruses 24(2): 337-43.
    110. Natarajan V., Bosche M., et al. (1999) Hiv-1 replication in patients with undetectable plasma virus receiving haart. Highly active antiretroviral therapy. Lancet 353(9147): 119-20.
    111. Neil S., Martin F., et al. (2001) Postentry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J Virol 75(12): 5448-56.
    112. Nilsson M., Antson D. O., et al. (2001) Rna-templated DNA ligation for transcript analysis. Nucleic Acids Res 29(2): 578-81.
    113. Nilsson M., Baner J., et al. (2002) Making ends meet in genetic analysis using padlock probes. Hum Mutat 19(4): 410-5.
    114. Nilsson M., Barbany G., et al. (2000) Enhanced detection and distinction of rna by enzymatic probe ligation. Nat Biotechnol 18(7): 791-3.
    115. Nilsson M., Dahl F., et al. (2006) Analyzing genes using closing and replicating circles. Trends Biotechnol 24(2): 83-8.
    116. Nilsson M., Krejci K., et al. (1997) Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nat Genet 16(3): 252-5.
    117. Nilsson M., Malmgren H., et al. (1994) Padlock probes: Circularizing oligonucleotides for localized DNA detection. Science 265(5181): 2085-8.
    118. Nord O., Lukacs M., et al. (2005) The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26: 501-10.
    119. Ono A., Demirov D., et al. (2000) Relationship between human immunodeficiency virus type 1 gag multimerization and membrane binding. J Virol 74(11): 5142-50.
    120. Osawa R., Yoshida A., et al. (2007) Rapid detection of actinobacillus actinomycetemcomitans using a loop-mediated isothermal amplification method. Oral Microbiol Immunol 22(4): 252-9.
    121. Pierson T. C., Kieffer T. L., et al. (2002) Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication. J Virol 76(8): 4138-44.
    122. Poljak L., Batson S. M., et al. (2003) Analysis of ncp7-dependent activation of hiv-1 cdna integration and its conservation among retroviral nucleocapsid proteins. J Mol Biol 329(3): 411-21.
    123. Poveda E., Briz V., et al. (2007) Correlation between a phenotypic assay and three bioinformatic tools for determining hiv co-receptor use. AIDS 21(11): 1487-90.
    124. Prins T. W., van Dijk J. P., et al. (2008) Optimised padlock probe ligation and microarray detection of multiple (non-authorised) gmos in a single reaction. BMC Genomics 9(1): 584.
    125. Raymond S., Delobel P., et al. (2008) Correlation between genotypic predictions based on v3 sequences and phenotypic determination of hiv-1 tropism. AIDS 22(14): F11-6.
    126. Rees W. A., Yager T. D., et al. (1993) Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 32(1): 137-44.
    127. Rodriguez-Sanchez B., Sanchez-Vizcaino J. M., et al. (2008) Improved diagnosis for nine viral diseases considered as notifiable by the world organization for animal health. Transbound Emerg Dis 55(5-6): 215-25.
    128. Rose K. M., Marin M., et al. (2004) Transcriptional regulation of apobec3g, a cytidine deaminase that hypermutates human immunodeficiency virus. J Biol Chem 279(40): 41744-9.
    129. Santiago M. L., Range F., et al. (2005) Simian immunodeficiency virus infection in free-ranging sooty mangabeys (cercocebus atys atys) from the tai forest, cote d'ivoire: Implications for the origin of epidemic human immunodeficiency virus type 2. J Virol 79(19): 12515-27.
    130. Schultz S. J., Champoux J. J. (2008) Rnase h activity: Structure, specificity, and function in reverse transcription. Virus Res 134(1-2): 86-103.
    131. Shafer R. W., Hsu P., et al. (1999) Identification of biased amino acid substitution patterns in human immunodeficiency virus type 1 isolates from patients treated with protease inhibitors. J Virol 73(7): 6197-202.
    132. Sharkey M. E., Teo I., et al. (2000) Persistence of episomal hiv-1 infection intermediates in patients on highly active anti-retroviral therapy. Nat Med 6(1): 76-81.
    133. Shehu-Xhilaga M., Crowe S. M., et al. (2001) Maintenance of the gag/gag-pol ratio is important for human immunodeficiency virus type 1 rna dimerization and viral infectivity. J Virol 75(4): 1834-41.
    134. Sheppard H. W., Lang W., et al. (1993) The characterization of non-progressors: Long-term hiv-1 infection with stable cd4+ t-cell levels. AIDS 7(9): 1159-66.
    135. Siegal F. P., Lopez C., et al. (1981) Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. N Engl J Med 305(24): 1439-44.
    136. Sierra S., Kaiser R., et al. (2007) Genotypic coreceptor analysis. Eur J Med Res 12(9): 453-62.
    137. Simon F., Mauclere P., et al. (1998) Identification of a new human immunodeficiency virus type 1 distinct from group m and group o. Nat Med 4(9): 1032-7.
    138. Simon J. H., Miller D. L., et al. (1998) Virion incorporation of human immunodeficiency virus type-1 vif is determined by intracellular expression level and may not be necessary for function. Virology 248(2): 182-7.
    139. Smith J. S., Kim S. Y., et al. (1990) Analysis of long terminal repeat circle junctions of human immunodeficiency virus type 1. J Virol 64(12): 6286-90.
    140. Spijkerman I., de Wolf F., et al. (1998) Emergence of syncytium-inducing human immunodeficiency virus type 1 variants coincides with a transient increase in viral rna level and is an independent predictor for progression to aids. J Infect Dis 178(2): 397-403.
    141. Stark L. A., Hay R. T. (1998) Human immunodeficiency virus type 1 (hiv-1) viral protein r (vpr) interacts with lys-trna synthetase: Implications for priming of hiv-1 reverse transcription. J Virol 72(4): 3037-44.
    142. Stougaard M., Lohmann J. S., et al. (2007) In situ detection of non-polyadenylated rna molecules using turtle probes and target primed rolling circle prins. BMC Biotechnol 7: 69.
    143. Strack B., Calistri A., et al. (2003) Aip1/alix is a binding partner for hiv-1 p6 and eiav p9 functioning in virus budding. Cell 114(6): 689-99.
    144. Strebel K., Klimkait T., et al. (1989) Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J Virol 63(9): 3784-91.
    145. Stuchell M. D., Garrus J. E., et al. (2004) The human endosomal sorting complex required for transport (escrt-i) and its role in hiv-1 budding. J Biol Chem 279(34): 36059-71.
    146. Szemes M., Bonants P., et al. (2005) Diagnostic application of padlock probes--multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res 33(8): e70.
    147. Tanchou V., Decimo D., et al. (1998) Role of the n-terminal zinc finger of human immunodeficiency virus type 1 nucleocapsid protein in virus structure and replication. J Virol 72(5): 4442-7.
    148. Teng P., Lee P., et al. (2006) Detection of infectious hypodermal and hematopoietic necrosis virus (ihhnv) in litopenaeus vannamei by ramification amplification assay. DISEASES OF AQUATIC ORGANISMS 73(2): 103.
    149. Teo I. A., Morlese J., et al. (2002) Reliable and reproducible lightcycler qpcr for hiv-1 DNA 2-ltr circles. J Immunol Methods 270(1): 109-18.
    150. Thekisoe O. M., Kuboki N., et al. (2007) Species-specific loop-mediated isothermal amplification (lamp) for diagnosis of trypanosomosis. Acta Trop 102(3): 182-9.
    151. Thomas D. C., Voronin Y. A., et al. (2007) Determination of the ex vivo rates of human immunodeficiency virus type 1 reverse transcription by using novel strand-specific amplification analysis. J Virol 81(9): 4798-807.
    152. Thomas J. A., Gagliardi T. D., et al. (2006) Human immunodeficiency virus type 1 nucleocapsid zinc-finger mutations cause defects in reverse transcription and integration. Virology 353(1): 41-51.
    153. Thomas J. A., Gorelick R. J. (2008) Nucleocapsid protein function in early infection processes. Virus Res 134(1-2): 39-63.
    154. Towers G. J., Hatziioannou T., et al. (2003) Cyclophilin a modulates the sensitivity of hiv-1 to host restriction factors. Nat Med 9(9): 1138-43.
    155. UNAIDS, WHO. Aids epidemic update : December 2007. (WHO Library Cataloguing-in-Publication Data, 2007).
    156. UNAIDS, WHO. (2007).
    157. Urdea M., Penny L., et al. (2006) Requirements for high impact diagnostics in the developing world. Nature 444(Suppl 1): 73-9.
    158. van der Kuyl A. C., Cornelissen M. (2007) Identifying hiv-1 dual infections. Retrovirology 4: 67.
    159. van Eijk M. J., Broekhof J. L., et al. (2004) Snpwave: A flexible multiplexed snp genotyping technology. Nucleic Acids Res 32(4): e47.
    160. Van Maele B., Busschots K., et al. (2006) Cellular co-factors of hiv-1 integration. Trends Biochem Sci 31(2): 98-105.
    161. von Schwedler U., Kornbluth R. S., et al. (1994) The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent t lymphocytes. Proc Natl Acad Sci U S A 91(15): 6992-6.
    162. Wang B., Potter S. J., et al. (2005) Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J Clin Microbiol 43(5): 2339-44.
    163. Warrilow D., Harrich D. (2007) Hiv-1 replication from after cell entry to the nuclear periphery. Curr HIV Res 5(3): 293-9.
    164. Welker R., Harris M., et al. (1998) Virion incorporation of human immunodeficiency virus type 1 nef is mediated by a bipartite membrane-targeting signal: Analysis of its role in enhancement of viral infectivity. J Virol 72(11): 8833-40.
    165. Wojdacz T., Hansen L., et al. (2008) A new approach to primer design for the control of pcr bias in methylation studies. BMC Research Notes 1(1): 54.
    166. Wolf D., Goff S. P. (2008) Host restriction factors blocking retroviral replication. Annu Rev Genet 42: 143-63.
    167. Xu C., Politch J. A., et al. (2005) Human immunodeficiency virus type-1 episomal cdna in semen. AIDS Res Ther 2: 9.
    168. Yamashita M., Emerman M. (2006) Retroviral infection of non-dividing cells: Old and new perspectives. Virology 344(1): 88-93.
    169. Yoneyama T., Kiyohara T., et al. (2007) Rapid and real-time detection of hepatitis a virus by reverse transcription loop-mediated isothermal amplification assay. J Virol Methods 145(2): 162-8.
    170. Yoshimura T., Arikado S., et al. (2006) Estimation of DNA polymerase for improvement of rolling circle amplification. Nucleic Acids Symp Ser (Oxf)(50): 303-4.
    171. Zhang D. Y., Zhang W., et al. (2001) Detection of rare DNA targets by isothermal ramification amplification. Gene 274(1-2): 209-16.
    172. Zhang L., Ramratnam B., et al. (1999) Quantifying residual hiv-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med 340(21): 1605-13.
    173. Zhong X. B., Lizardi P. M., et al. (2001) Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc Natl Acad Sci U S A 98(7): 3940-5.
    174. Zhou X., Kong F., et al. (2008) Practical method for detection and identification of candida, aspergillus, and scedosporium spp. By use of rolling-circle amplification. J Clin Microbiol 46(7): 2423-7.
    175. Zhou Y., Calciano M., et al. (2001) In situ detection of messenger rna using digoxigenin-labeled oligonucleotides and rolling circle amplification. Exp Mol Pathol 70(3): 281-8.

    下載圖示 校內:2013-03-26公開
    校外:2019-03-26公開
    QR CODE