簡易檢索 / 詳目顯示

研究生: 張鋐錡
Chang, Hung-chi
論文名稱: 建構於變晶性高電子移動率電晶體之半導體式氫氣感測器之研究
Investigation of Semiconductor Hydrogen Sensors Based on Metamorphic High Electron Mobility Transistors (MHEMTs)
指導教授: 劉文超
Liu, Wen-Chan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 114
中文關鍵詞: 氫氣感測器
外文關鍵詞: hydrogen sensor
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數十年來,各種不同類型的氫氣感測器被廣泛的研究與開發。而自從以蕭特基接觸為基礎的氫氣感測機制被提出之後,隨著半導體製程的進步,體積小、靈敏度高,可大量生產的半導體式氫氣感測器逐漸成為研究主流。
    在本論文中有鑒於鈀金屬對於氫氣的優越觸媒特性以及高電子移動率場效電晶體極佳放大器功能和穩定成熟的半導體製程技術,因此,我們首先研製了一個具有高銦含量之砷化銦鎵通道層的砷化銦鋁/砷化銦鎵/砷化鎵變晶性高電子移動率場效電晶體式氫氣感測器並且以鈀金屬作為觸媒金屬,其具有高電子的移動速率、電流密度等傳輸特性,另外為了探討氧化層對於感測特性所造成的影響,我們研製了一個具有氧化層的砷化銦鋁/砷化銦鎵/砷化鎵變晶性高電子移動率場效電晶體式氫氣感測器並且以相同的鈀金屬作為觸媒金屬,繼而在不同溫度與濃度條件下來作一連串穩態和暫態響應的電性分析與熱力學及動力學探討。由實驗結果得知,具有氧化層之感測元件能夠大幅提升對氫氣的感測效能,最後期許在未來多功能氣體感測器的整合型晶片能夠實現化。

    Many hydrogen sensors have been investigated and studied comprehensively in several decades. Since the hydrogen-sensing mechanism based on the Schottky barrier height variation has been proposed, the related semiconductor-type hydrogen sensors have attracted great attention due to the advantages of high hydrogen detection sensitivity, low cost and matured techniques. In this thesis, due to the good catalytic activity of palladium and the advantages of high electron mobility transistor (HEMT), hydrogen sensors based on InAlAs/InGaAs/GaAs metamorphic high electron mobility transistors (MHEMTs) are fabricated and demonstrated with depositing the same catalytic palladium metal. In addition, in order to study the influence of a thin oxide layer on hydrogen detection ability, Therefore, we also fabricated a Pd-oxide-InAlAs metamorphic high electron mobility transistor (MHEMT) is also fabricated for comparison. In accordance with these two devices, we exhibit a series of analyses of steady-state and transient response behaviors under hydrogen-containing atmospheres at different operating temperatures. From the experimental results, the thin oxide layer can suppress the Fermi-level pinning effect and prevent interdiffusion at the Pd/InAlAs interface. So hydrogen detection ability can be improved.

    Abstract Figure Captions Chapter 1 Introduction 1.1. Introduction to Hydrogen Sensors..............…..…..……............................ 1 1.2. Hydrogen Detection Mechanism….............................................................….......3 1.3. Langmuir Model………………..…...........…........…………………...……. 4 1.4. Gas Detection Apparatus and Measurement...........................…............ 6 1.5. Summary..................................................................................... 7 Chapter 2 Study of a Pd/In0.42Al0.58As Metal-Semiconductor (MS) Metamorphic High Electron Mobility Transistor (MHEMT)-Type Hydrogen Sensor 2.1. Introduction............................................................................................................9 2.2. Device Structure and Fabrication…....................................................................10 2.3. Experimental Results and Discussion………………..…...........…........……….12 2.3.1 Electrical Properties Analysis…...…………………………………….…12 2.3.2 Steady-State Analysis…………….……………….……………………...16 2.3.3 Transient-State Analysis……………………………………..…………….18 2.4. Summary…….............................................................................….....................21 Chapter 3 Hydrogen-Sensing Characteristics of a Pd/Oxide/In0.42Al0.58As Metal-Oxide-Semiconductor (MOS) Metamorphic High Electron Mobility Transistor (MHEMT) 3.1. Introduction..........................................................................................................23 3.2. Device Structure and Fabrication………………….............................................24 3.3. Experimental Results and Discussion……………….............................……….25 3.3.1 Electrical Properties Analysis…...…………………………………….…25 3.3.2 Steady-State Analysis…………….……………….……………………...28 3.3.3 Transient-State Analysis……………………………………..…………….29 3.4. Summary…….............................................................................….....................31 Chapter 4 Conclusion and Prospects 4.1. Conclusion.......................................................................................................….33 4.2. Prospects…….......................................................................................................34 References Figures Publication List

    [1] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18, 2002.
    [2] M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE, vol. 18, pp. 779-784, 2002.
    [3] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias, “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol. 18, pp. 287-289, 1997.
    [4] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol. 2, pp. 431-440, 1997.
    [5] P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.
    [6] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental protection,” IEEE Tran. Compo. Packag. Manuf. Technol. Part A vol. 18, pp. 252-256, 1995.
    [7] A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid state gas sensor devices, ,” ch 3, New York: John Wily & Sons (1993).
    [8] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp. 825-835, 1992.
    [9] W. Gopel, J. Hesse, and J. N. Zemel, “Sensors,” vol. 1, ch 10, Weinheim: VCH press (1991).
    [10] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. 1-30, 1990.
    [11] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors, ” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
    [12] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
    [13] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
    [14] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
    [15] M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly, and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE, vol.18, pp. 779-784, 2002.
    [16] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
    [17] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors, ” IEEE Trans. Electron Devices, vol. 35, pp. 793 –799, 1988.
    [18] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp. 825-835, 1992.
    [19] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.2, pp. 431 –440L, 1997.
    [20] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias, “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol, 18, pp. 287-289, 1997.
    [21] C. C. Chang, Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, pp. 624-628, 1997.
    [22] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field effect transistor,” Appl. Phys. Lett., vol .26, pp. 55-57, 1975.
    [23] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A New Hydrogen Sensor Based on a Pt/GaAs Schottky Diode,” J. Electrochem. Soc., vol. 138, pp. 159-161, 1991.
    [24] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd/GaAs Schottky Diodes Prepared by Electroless Plating Technique,” Semicond. Sci. Technol., vol. 18, pp. 620-626, 2003.
    [25] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A New Hydrogen Sensor Based on a Pt/GaAs Schottky Diode,” J. Electrochem. Soc., vol. 138, pp. 159-161, 1991.
    [26] M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-state. Electron., vol. 25, pp. 753-758, 1982.
    [27] V. Battut, J. P. Blanc, E. Goumet, V. Soulière, and Y. Monteil, “NO2 sensor based on InP epitaxial thin layers,” Thin Solid Films, vol. 348, pp. 266-272, 1999.
    [28] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
    [29] H. I. Chen and Y. I. Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol., vol. 19, pp. 39-44, 2004.
    [30] V. Battut, J. P. Blanc, and C. Maleysson, “Gas sensitivity of InP epitaxial thin layers” Sens. Actuators B, vol. 44, pp. 503-506, 1997.
    [31] Y. I. Chou, C. M. Chen, and H. I. Chen, “A new Pd/InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,“ IEEE Electron Device Lett., vol. 26(2), pp. 62-65, 2005.
    [32] H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” IEE Electron. Lett., vol. 38, no.2, pp. 92-94, 2002
    [33] Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Comparative hydrogen sensing performances of Pd- and Pt-InGaP metal-oxide-semiconductor Schottky diodes,” J. Vac. Sci. Technol. B, vol. 21, pp. 2471-2477, 2003.
    [34] A. L. Spetz, L. Nnëus, H. Svenningstrop, P. Toblas, L.-G. Ekedahl and O. Larsson et al., “SiC based field effect gas sensors for industrial applications,” Phys Status Solidi A, vol. 185, pp. 15–25, 2001.
    [35] F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier and M. Eickhoff, “A highly stable SiC based microhotplate NO2 gas-sensor, ” Sensor Actuat B, vol. 78, pp. 216–220, 2001.
    [36] S. Roy, C. Jacob and S. Basu, “Ohmic contacts to 3C–SiC for Schottky diode gas sensors,” Solid-State Electron, vol. 47, pp. 2035–2041, 2003.
    [37] F. Qiu, M. Matsumiya, W. Shin, N. Izu and N. Murayama, “Investigation of thermoelectric hydrogen sensor based on SiGe film,” Sens. Actuators B, vol. 94, pp. 152-160, 2003.
    [38] Y. Gurbuz, , W. P. Kang, J. L. Davidson, and D. V. Kerns, “Current Conduction Mechanism and Gas Adsorption Effects on Device Parameters of the Pt/SnO /Diamond Gas Sensor, ” IEEE Trans. Electron Devices., vol. 46, no.5, pp. 914-920, 1999.
    [39] Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Diamond microelectronic gas sensors,” Sens. Actuators B, vol. 33, pp. 100-104,1996.
    [40] Y. Gurbuz, W. P. Kang, J. L. Davidson, and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors, ” Sens. Actuators B, vol. 36, pp. 68-72, 1996.
    [41] B. P. Luther, S. D. Wolter and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN, ” Sensor Actuator B, vol. 56, pp. 164–168, 1999.
    [42] J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton, and F. Ren, “Hydrogen-sensitive GaN Schottky diodes, ” Solid-State Electron, vol. 47, pp. 1069–1073, 2003.
    [43] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electronics, vol. 49, pp. 1330-1334, 2005.
    [44] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
    [45] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, Chun-Yuan Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes,” Semicond. Sci. Technol., vol. 19, pp. 778-782, 2004.
    [46] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, no. 12, pp. 8175-8181, 1994.
    [47] L. M. Lechuga, A. Calle, D. Golmayo, F. Briones, “Different catalytic metals (Pt, Pd, and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, pp. 614-618, 1992.
    [48] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/lGaAs-based Schottky diodes”, IEEE Trans. Electron Devices, vol. 50, p.2532-2539, 2003.
    [49] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B. vol. 94, pp. 145-151, 2003.
    [50] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
    [51] D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs -platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci. Technol. B, vol. 1, no. 3, pp. 602-607, 1983.
    [52] W. C. Liu, H. J. Pan, H. I Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
    [53] H. I. Chen and Y. I. Chou, “ A comparative study on hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003.
    [54] S. Okuyama, K. Umemoto, K. Okauyama, S. Ohshima, and K. Matsushita, ” Pd/Ni-Al2O3-Al tunnel diode as high-concentration-hydrogen gas sensor,” J. Appl. Phys., vol. 36, pp. 1228-1232, 1997.
    [55] S. Okuyama, H. Usami, K. Okauyama, H. Yamada, and K. Matsushita, ” Improved response time of Pd/Ni-Al2O3-Al tunnel diode hydrogen gas sensor,” J. Appl. Phys., vol. 36, pp. 6905-6908, 1997.D
    [56] K. Mutamba, M. Flath, A. Sigurdardottir, A. Vogt, and H. L. Hartnagel, ” A GaAs pressure sensor with frequency output based on resonant tunneling diodes,” IEEE Trans. vol. 48, pp. 1333-1337, 1999.
    [57] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd/oxide/Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett., vol. 24, pp. 390-392, 2003.
    [58] L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device, ” IEEE Electron Device Lett., vol. 2, pp. 32-34, 1981.
    [59] O. Casals, B. Barcones, C. Serre, J. R. Morante, P. Godignon, J. Montserrat, and J. Mill´an, “Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor, ” Sens. Actuators B, vol. 109, pp. 119-127, 2005.
    [60] S. Pitcher, J. A. Thiele, H. Ren, and J. F. Vetelino, ”Current/voltage characteristics of a semiconductor metal oxide gas sensor, ”Sens. Actuators B, vol. 93, pp. 454-462, 2003.
    [61] P. Salomonsson, E. Jobson, B. Häggendal, J. Nytomt, C. Carlsson, M. Glavmo, and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases,” Sens. Actuators B, vol. 43, pp. 52-59, 1997.
    [62] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators, vol. 1, pp. 403-426, 1981.
    [63] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing properties of a Pt-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT),” Appl. Phys. Lett., vol. 86, 2005.
    [64] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R. Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,” IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.
    [65] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R. Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,” IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.
    [66] R. E. Stahlbush, “Interface defect formation in MOSFETs by atomic hydrogen exposure,” IEEE Trans. Nucl. Sci., vol. 41, pp. 1844-1853, 1994.
    [67] T. Wang, C. Huang, P. C. Chou, S. S. S. Chung, and T. E. Chang, “Effect of hot carrier induced interface state generation in submicron LDD MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp. 1618-1622, 1994.
    [68] I. C. Kizilyalli, J. W. Lyding, and K. Hess, “ Deuterium post-metal annealing of MOSFET’s for improved hot carrier reliability,” IEEE Electron Device Lett., vol. 18, pp. 81-83, 1997.
    [69] H. Seo, T. Endoh, H. Fukuda, and S. Nomura, “High sensitive MOSFET gas sensors with porous platinum gate electrode,” IEE Electron Lett., vol. 33, pp. 535-536, 1997.
    [70] K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/oxide/GaAs metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol, vol. 16, pp. 997-1001, 2001.
    [71] G. Alefeld and J. Völkl, “Hydrogen in metals I-basic properties,” ch 12, Berlin; Springer-Verlag (1978).
    [72] G. Alefeld and J. Völkl, “Hydrogen in metals II-Application-oriented properties ,” ch 3, Berlin: Springer-Verlag (1978).
    [73] D. N. Jewett and A. C. Makrides, “Diffusion of hydrogen through palladium and palladium-silver alloy,” J. Chem. Soc. Faraday Trans. vol. 61, pp. 932-939, 1965.
    [74] P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS Schottky barrier diode hydrogen detector, ”(1981). IEEE Trans. Electron Devices, vol. 28, pp. 1003-1009, 1981.
    [75] I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol. 14, pp.1539-1545, 1996.
    [76] Y. Morita, K. I. Nakamura, and C. Kim, ”Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B., vol. 33, pp. 96-99, 1996.
    [77] R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin-film palladium and silver alloys and layers for metal-insulator-semiconductor sensors,” J. Appl. Phys., vol. 62, pp. 1074-1084, 1987.
    [78] M. A. Vannice, J. E. Benson, and M. Boudart, “Determination of surface area by chemisorption: Unsupported platinum,” J. Catal., vol. 16, pp. 348-356, 1995.
    [79] A. Abe and T. Hosoya, Proc. “World Hydrogen Energy Conf., 5th,” Toronto, vol. 4, pp.1893, 1984.
    [80] I. Lundström, M. Armgarth, and L. Pettersson, “Physics with catalytic metal gate chemical sensors,” CRC Critical Reviews in Solid State and Mater. Sci., vol. 15, no. 3, pp. 201-278, 1989.
    [81] S. Seki, O. Kogure, and B. Tsujiyamma, “A semi-empirical model for the field-effect mobility of hydrogenated polycrystalline silicon MOSFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 669-674, 1988.
    [82] M. Burgmair, H. P. Frerichs, M. Zimmer, M. Lehmann, and I. Eisele, ”Field effect transducers for work function gas measurements: device improvements and comparison of performance,” Sens. Actuators B, vol. 95, pp. 183-188, 2003.
    [83] J. D. Jeyaprakash, S. Samuel, P. Ruther, H. P. Frerichs, M. Lehmann, O. Paulb, J. Ruhe, ”A simple route towards the reduction of surface conductivity in gas sensor devices,” Sens. Actuators B, vol. 110, pp. 218-224, 2005.
    [84] R. Paris, S. Pawel, R. Herzer, T. Doll, P. Kornetzky, R. P. Gupta, G.. Eranna, ”Low drift air-gap CMOS-FET gas sensor, ” Proceedings of IEEE Sensors, vol. 1, pp. 421-425, 2002
    [85] Z. Gergintschew, P. Kometzky, D. Schipanski, ”The capacitively controlled field effect transistor (CCFET) as a new low power gas sensor,” Sens. Actuators B, vol. 35, pp. 285-289, 1996.
    [86] P. Win, Y. Druelle, A. Cappy, Y. Cordier, D. Adam, and J. Favre, “Metamorphic In0.3Ga0.7As/In0.29Al0.71As layer on GaAs: a new structure for millimeter wave ICs,” IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, Proceedings, 1993.
    [87] Y. Cordier, S. Bollaert, M. Zaknoune, J. diPersio, and D. Ferre, “AlInAs/GaInAs metamorphic HEMT's on GaAs substrate: from material to device,” Indium Phosphide and Related Materials, 1998 International Conference on 11-15 May, pp. 211-214, 1998.
    [88] K. Eisenbeiser, R. Droopad, J. H. Huang, “Metamorphic InAlAs/InGaAs enhancement mode HEMTs on GaAs substrates,” IEEE Electron Device Letters, vol. 20, pp. 507-509.
    [89] C. Karlsson, N. Rorsman, S. Wang, and M. Persson, “Metamorphic HFETs with composite In0.8Ga0.2As/InAs/In0.8Ga0.2As channels on GaAs substrate,” IEEE International Symposium, Compound Semiconductors, pp. 483-486.
    [90] K. C. Hwang, P. C. Chao, C. Creamer, K. B. Nichols, S. Wang, D. Tu, W. Kong, D. Dugas, and G. Patton, “Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT's,” IEEE, Electron Device Lett., vol. 20, no. 11, pp. 551-553, 1999.
    [91] R. J. Silbey and R. A. Alberty, Physical chemistry – 3rd ed., John Willey & Sons, Inc., New York, 2001.
    [92] R. A. Alberty and R. J.Silbey, “Physical Chemistry,” p. 640, New York: Jonn Wiley and Sons (1992).
    [93] K. J. Laidler and J. H. Meiser, “Physical Chemistry,” p. 385, Boston: Houghton Mifflin (1995).
    [94] J. Fogelberg and L. G. Petersson, “Kinetic modeling of the H2-O2 reaction on Pd and of its influence on the hydrogen response of a hydrogen sensitive Pd metal-oxide-semiconductor device, ” Surf. Sci., vol. 350, pp. 91-102, 1996.
    [95] J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, 1995.
    [96] R. L. Van Meirfaeghe, W. H. Laflere, and F. Cardon, “Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts,” J. Appl. Phys., vol. 76, pp. 403-406, 1994.
    [97] M. J. Graham, S. Moisa , G. I. Sproule, X. Wu, D. Landheer, A. J. SpringThorpe, P. Barrios, S. Kleber, and P. Schmuki, ”Oxidation of III–V semiconductors, ” Corrosion Science, vol. 49, pp. 31-34, 2007.
    [98] D. Briand, H. Sundrgen, B. van der Schoot, I. Lundström, and N. F. de. Rooij, “Thermally isolated MOSFET for gas sensing application,” IEEE Electron Device Lett., vol.22, pp.11-13, 2001.D
    [99] J. F. wager and C. W. wilmsen, “Thermal oxidation of InP,” J.Appl. Phys., vol. 51, pp. 812-814, 1980.
    [100] A. A. Iliadis, “Nearly ideal enhanced barrier height Schottky contacts to n-InP for MESFET applications,” IEE Electron Lett., vol. 25, pp. 572-574, 1989.
    [101] R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studied of Pd metal/insulator/semiconductor diode H2 sensors,” J. Appl. Phys., vol. 62, pp. 1084-1092, 1987.
    [102] D. Li, A. H. Mcdaniel, R. Bastasz, and J. W. Medlin, “Effects of a polyimide coating on the hydrogen selectivity of MIS sensors,” Sens. Actuators B, vol. 115, pp. 86-92, 2006.

    下載圖示 校內:2008-06-30公開
    校外:2008-06-30公開
    QR CODE