| 研究生: |
陳智凱 Chen, Zhi-Kai |
|---|---|
| 論文名稱: |
控制金鈀核殼奈米立方體的核大小及殼層厚度對其電漿性質的影響 Core size effect of plasmonic property in shell thickness-controlled Au-Pd core-shell nanocubes |
| 指導教授: |
吳欣倫
Wu, Hsin-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 局部表面電漿共振 、奈米粒子 、核殼結構 、金 、鈀 、熱電子 |
| 外文關鍵詞: | Nanoparticles, Au, Pd, nanocubes, core-shell, plasmon, hot electron |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬奈米粒子的局部表面電漿共振性質近年來受到極大的關注,經由照光來激發電漿性質產生熱電子,並應用於化學反應中,可以有效的將光能轉變為化學能。透過了解局部表面電漿共振的激發及衰退機制可以幫助我們更有效的利用光能,來達到太陽能的最大利用。本實驗是利用雙金屬核殼奈米粒子,將具有高電漿性質的金屬作為核心及高催化特性的金屬作為殼層來進行表面電漿共振性質的研究。我們成功合成出不同鈀殼厚度的金鈀核殼奈米粒子,研究不同尺寸的金奈米粒子核心產生的熱電子在不同鈀殼層厚度的傳遞與催化效果,並且調整光催化時所使用的照光波長,來研究光波長對不同尺寸核心金屬所產生電漿性質在殼層結構中的影響。
Metallic nanoparticles (NPs) with the localized surface plasmon resonance (LSPR) property have received tremendous attention in recent years due to their unique optics. When plasmon decays, the metal NPs would generate hot electrons, which can convert solar energy to chemical energy. Hot electron could carry energy and apply to chemical reactions. Maximum utilization of solar energy could be achieved through understanding the excitation and decay the of LSPR. In this study, bimetallic core-shell nanoparticles were used to study the LSPR property by synthesizing highly plasmonic metal as the core and highly catalytic metal as the shell. We synthesized well shell thickness-controlled Au-Pd core-shell NPs to study the hot electrons that generated by the different size of Au cores and the catalytic effect when the hot electrons passing through various thickness of the Pd shell. We also changed the wavelength of light to excite the LSPR of the Au-Pd core-shell NPs. By this way, the effect of light wavelength on the LSPR property in these core-shell structures could be investigated.
1.5 參考文獻
(1) Pillai, S.; Catchpole, K. R.; Trupke, T.; Green, M. A. J. Appl. Phys. 2007, 101, 93105.
(2) Haynes, C. L.; Van Duyne, R. P. J. Phys. Chem. B 2003, 107, 7426.
(3) Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 10596.
(4) Homola, J. Chem. Rev. 2008, 108, 462.
(5) Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267.
(6) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
(7) Hao, E.; Schatz, G. C. J. Chem. Phys. 2004, 120, 357.
(8) Huang, H.; Zhang, L.; Lv, Z.; Long, R.; Zhang, C.; Lin, Y.; Wei, K.; Wang, C.; Chen, L.; Li, Z. Y.; Zhang, Q.; Luo, Y.; Xiong, Y. J. J. Am. Chem. Soc. 2016, 138, 6822.
(9) Zhang, Z.; , Deckert-Gaudiga, T.; Deckert, V. The Royal Societyof Chemistry 2015, 140, 4325.
(10) Zheng, Z.; Tachikawa, T.; Majim, T. J. Am. Chem. Soc. 2015, 137, 948.
(11) Peiris, S.; McMurtrie, J.; Zhu, H. Y. The Royal Societyof Chemistry. Catal. Sci. Technol. 2016, 6, 320.
(12) Bagheri, S.; Strohfeldt, N.; Sterl, F.; Berrier, A.; Tittl, A.; Giessen, H. ACS. Sens. 2016, 1, 1148.
(13) Hsu, S. C.; Chuang, Y. C.; Sneed, B. T.; Cullen, D. A.; Chiu, T. W.; Kuo, C. H. ACS. Nano. Lett. 2016, 16, 5514.
(14) Rodal-Cedeira, S.; Montes-García, V.; Polavarapu, L.; Solís, D. M.; Heidari, H.; Porta, A. L.; Angiola, M.; Martucci, A.; Taboada, J. M.; Obelleiro, F.; Bals, S.; Pérez-Juste, J.; Pastoriza-Santos. L. ACS. Chem. Mater. 2016, 28, 9169.
(15) Chaudhuri, R. G.; Paria, S. ACS. Chem. Rev. 2012, 112, 2373.
(16) Lu, C. L.; Prasad, K. S.; Wu, H. L.; Ho, J. A.; Huang, M. H. J. Am. Chem. Soc. 2010, 132, 14546.
(17) Chiu, C. Y.; Yang, M. Y.; Lin, F. C.; Huang, J. S.; Huang, M. H. J. Am. Chem. Soc. 2014, 6, 7656.
(18) Huang, H.; Zhang, L.; Lv, Z.; Long, R.; Zhang, C.; Lin, Y.; Wei, K.; Wang, C.; Chen, L.; Li, Z. Y.; Zhang, Q.; Luo, Y.; Xiong, Y. J. J. Am. Chem. Soc. 2016, 138, 6822.
(19) Aslam, U.; Chavez, S.; Linic, S. Nature. Nanotech. 2017, 12, 1000.
(20) Tan, S, F.; Bisht, G.; Anand, U.; Bosman, B.; Yong, X, E.; Mirsaidov, U. J. Am. Chem. Soc. 2018, 140, 11680.
(21) Yang, C. W.; Chanda, K.; Lin, P. H.; Wang, Y. N.; Liao, C. W.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 19993.
2.4 參考文獻
(1) Chiu, C. Y.; Yang, M. Y.; Lin, F. C.; Huang, J. S.; Huang, M. H. J. Am. Chem. Soc. 2014, 6, 7656.
(2) Huang, H.; Zhang, L.; Lv, Z.; Long, R.; Zhang, C.; Lin, Y.; Wei, K.; Wang, C.; Chen, L.; Li, Z. Y.; Zhang, Q.; Luo, Y.; Xiong, Y. J. J. Am. Chem. Soc. 2016, 138, 6822.
(3) Lu, C. L.; Prasad, K. S.; Wu, H. L.; Ho, J. A.; Huang, M. H. J. Am. Chem. Soc. 2010, 132, 14546.
3.5參考資料
(1) ) Lin, S.; Hsu, C.; Chiu, S.; Liao, T.; Chen, H. M. J. Am. Chem. Soc. 2017, 139, 2224.
(2) Zheng, Z.; Tachikawa, T.; Majima, T. J. Am. Chem. Soc. 2015, 137, 948.
(3) Peiris, P.; McMurtrie, J.; Zhu, H. TY. Catal. Sci. Technol. 2016, 6, 320.
(4) T. Thuy Trinh,; Sato, R.; Sakamoto, M.; Fujiyoshi, Y.; Haruta, M.; Kurata, H.; Teranishi, T. Nanoscale. 2015, 7, 12435.
(5) Huang, H.; Zhang, L.; Lv, Z.; Long, R.; Zhang, C.; Lin, Y.; Wei, K.; Wang, C.; Chen, L.; Li, Z. Y.; Zhang, Q.; Luo, Y.; Xiong, Y. J. J. Am. Chem. Soc. 2016, 138, 6822.
(6) Besteiro, L. V.; Kong, X. T.; Wang, Z.; Hartland, G.; O. Govorov. A. ACS Photo. 2017, 4, 2759.
(7) Ratchford, D. C.; Dunkelberger, A. D.; Vurgaftman, I.; Owrutsky, J. C.; Pehrsson, P. C. Nano Lett. 2017, 17, 6047.
校內:2024-07-16公開