簡易檢索 / 詳目顯示

研究生: 黃毓茹
Huang, Yu-Ju
論文名稱: 粉狀活性碳吸附原水中Geosmin與2-MIB之研究
The study about the removal of Geosmin and 2-MIB by powder activated carbon
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 110
中文關鍵詞: Geosmin2-MIB粉狀活性碳(PAC)均勻表面擴散模式(HSDM)等背景化合物(EBC)模式
外文關鍵詞: 2-methylisoborneol (2-MIB), powered activation carbon (PAC), chlorine, homogeneous surface diffusion model (HSDM), Geosmin, equivalent background compound (EBC) model
相關次數: 點閱:161下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自來水中的臭味問題在南台灣地區存在已久,常被民眾抱怨的臭味有氯味、魚腥味及土霉味,其中前兩者可分別藉由調整加氯劑量和氧化劑的使用得到良好的控制,但傳統處理程序卻難以有效去除土霉味,先前的研究發現粉狀活性碳(powdered activated carbon, PAC)可有效控制土霉味物質2-MIB,同時也成功的以一組動力吸附實驗配合均勻表面擴散模式(homogeneous surface diffusion model, HSDM)模擬及預測PAC對2-MIB之吸附動力。由於兩種土霉味物質2-MIB與Geosmin常同時存在,因此本研究探討應用HSDM模擬與預測PAC同時吸附此兩種物質之適用性。此另一方面,國內淨水廠大多有前加氯程序,因此本研究也探討氯與有機物間的作用對於活性碳吸附土霉味物質的影響。

    研究中顯示HSDM模式能合理模擬PAC對2-MIB及Geosmin之吸附動力研究結果,最佳化之參數,並能預測不同土霉味物質濃度及不同PAC添加劑量下之動力實驗結果,同時模式預測結果也能合理的推估瓶杯試驗與實廠流程對2-MIB與Geosmin之去除效果。

    在活性碳吸附兩種土霉味物質受氯影響部份,不論是加氯原水或預先加氯再除氯的原水,活性碳吸附2-MIB與Geosmin的能力均降低,且隨預氯時間增長而去除率降低。

    鳳山原水分子量分離結果顯示,其有機質組成集中在分子量<1000部分,經加氯後有部分的有機物有略為增加的趨勢,顯示氯會將部份較大的有機物鍵結打斷,形成之小分子有機物會與臭味物質競爭吸附位置,造成吸附量降低。另一方面,傅利葉紅外線光譜分析結果也顯示,氯會使水中有機物親水性增加,但主要在分子量小於1000的部分,這種親水性增加的結果會使小分子有機物對活性碳的競爭降低。惟由加氯原水吸附反應結果顯示,此部分效應,不若大分子變成小分子有機物效應顯著,因此造成活性碳附量降低。

    Odor problem has been present in the drinking water in South Taiwan for a long time. Fishy, chlorious and musty/earthy odors are major odor groups that are usually complained. Among the three odor groups, chlorious odor may be controlled by regulating the dosage of chlorine, and fishy odor can be removed by chemical oxidation. However, it is difficult to remove musty/earthy odor by conventional treatment processes. Previous studies suggested that powdered activated carbon (PAC) can effectively remove the typical musty odorant 2-methylisoborneol (2-MIB) from drinking water sources. Incorporating with an appropriate kinetic model only one kinetic experiment is needed for the prediction of PAC doses. However, two musty/earthy compounds, 2-MIB and geosmin, are usually present in the source water at the same time. Therefore, the suitability of applying the HSDM model to simulate and predict the adsorption of 2-MIB and geosmin onto PAC were studied. As most water treatment plants in Taiwan use pre-chlorination processes for the oxidation of ammonia, and the effect of chlorine on the adsorption of 2-MIB and geosmin to PAC is also investigated.

    The experimental results indicated that the homogeneous surface diffusion model (HSDM) is able to predict the adsorption kinetic curves at different odorant concentrations under different PAC dosages. In addition, the models is able to predict the removal efficiency of 2-MIB and Geosmin obtained from both jar tests and the experimental results from a full scale water treatment plant, Feng-Shan Waterworks (FSW).

    The adsorption capacity of 2-MIB and Geosmin on the PAC decreased in either chlorinated natural water or dechlorinated ”chlorinated natural water”. And the longer time that the natural water chlorinated, the lower adsorption capacity is for 2-MIB and Geosmin on PAC.

    A separation and following experiments of natural organic matter (NOM) to three molecular ranges, <1000, <5000, and <10,000, in FSW raw water were conducted. Most of the NOM in FSW water are less than 1000 Dalton. After chlorination, the molecular weight distribution changed slightly for FSW water. An increase of small molecule NOM was observed due to the breakdown of larger molecules. The small molecules may compete with the odorants for the adsorption sites on PAC. The FTIR analysis showed that chlorination may increase the hydrophility of the NOM, mainly at molecular weight <1000. This change may decrease the adsorption capacity of NOM on the PAC. Although both the change of NOM hydrophility and NOM size distribution may influence the PAC adsorption capacity of odorants, our adsorption experiments of PAC in the prechlorinated water suggested that the effect of NOM size reduction is more substantial.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 第一章 前言 1 1-1研究緣起 1 1-2研究目的 2 1-3研究內容 3 第二章 文獻回顧 5 2-1自來水中的臭味問題 5 2-1-1水中臭味的種類及其成因 5 2-1-2台灣南部自來水中的臭味物質 7 2-1-3造成水中土霉味之物質 8 2-2活性碳吸附MIB及Geosmin之相關研究 12 2-2-1活性碳的特性 13 2-2-2 土臭味物質的吸附 15 2-2-3水質條件的影響 15 2-2-4 添加位置 16 2-2-5接觸時間 17 2-3加氯對活性碳吸附的影響 19 2-3-1餘氯與活性碳的作用 19 2-3-2餘氯對活性碳吸附水中有機物之影響 20 2-3-3餘氯對活性碳吸附2-MIB之影響 22 2-4平衡模式 24 2-4-1 假想(Fictive Components, FCs)模式 24 2-4-2等背景化合物模式 26 2-5動力模式 29 2-5-1 HSDM模式理論 29 2-5-2 HSDM模式之應用 32 第三章 實驗設備與方法 34 3-1活性碳備製 34 3-2土臭味物質之分析方法 35 3-2-1實驗試劑 35 3-2-2實驗設備 35 3-2-3實驗方法 36 3-3吸附實驗 38 3-3-1實驗試劑 38 3-3-2實驗設備 38 3-3-3實驗水樣 39 3-3-4活性碳吸附2-MIB及Geosmin之實驗 39 3-3-4-1附動力實驗 40 3-3-4-2吸附平衡實驗 41 3-4天然有機質之分子量分佈 45 3-5 鳳山實廠添加粉狀活性碳之實驗 47 3-5-1 瓶杯試驗(Jar-test) 47 3-5-2 鳳山淨水廠現場調查 48 3-6 HSDM模式應用 51 第四章 結果與討論 54 4-1 單目標及雙目標化合物的吸附動力實驗 54 4-2 以HSDM模式預測原水中2-MIB與Geosmin之吸附動力實驗 56 4-2-1 活性碳在原水之吸附 56 4-2-2 HSDM模式之應用 59 4-3 加氯原水的吸附動力實驗 67 4-3-1活性碳在不同加氯量鳳山原水中之吸附動力 67 4-3-2經氯作用後原水之活性碳吸附動力實驗 71 4-4 氯對活性碳吸附之作用分析 73 4-4-1 吸附平衡實驗 69 4-4-2 紅外線(FTIR)光譜分析 76 4-4-3 鳳山原水中有機物的分子量分佈 84 4-5鳳山實廠添加粉狀活性碳之實驗 87 第五章 結論與建議 95 5-1結論 95 5-2建議 96 參考文獻 97 自述 105 表目錄 表2-1 五種常見之有機土霉臭物質 10 表2-2 台灣各地水廠原水2-MIB濃度 11 表2-3 活性碳之孔隙大小比較 14 表2-4 粉狀活性碳添加至各淨水單元之優、缺點 18 表3-1 WPH-PAC及FS-PAC之特性分析 34 表3-2 原水水質資料 39 表3-3 鳳山淨水場流程採樣時間表 49 表4-1 不同加氯劑量下吸附動力實驗之餘氯量 69 表4-2 FTIR圖譜中各波峰代表之官能基 77 表4-3 實場各處理流程添加活性碳前後MIB之去除率 94 表4-4 實場各處理流程添加活性碳前後Geosmin之去除率 94 圖目錄 圖1-1 研究流程圖 4 圖2-1 臭味輪 9 圖2-2 活性碳WPH在鳳山原水中的吸附動力曲線(楊氏, 2001) 33 圖2-3 活性碳WPH在鳳山原水中的吸附動力預測(楊氏, 2001) 33 圖3-1 SPME裝置示意圖 37 圖3-2 吸附動力實驗裝置示意圖 42 圖3-3 吸附平衡實驗裝置示意圖 43 圖3-4 氯作用原水之活性碳吸附實驗步驟圖 44 圖3-5 分子量分離裝置示意圖 46 圖3-6 鳳山實廠之現場採樣點示意圖 50 圖3-7 DS最佳化求法示意圖 53 圖4-1 WPH活性碳對2-MIB單獨存在與同時存在Geosmin時之 動力吸附線 55 圖4-2 WPH活性碳對Geosmin單獨存在與同時存在2-MIB時之 動力吸附線 55 圖4-3 鳳山原水中2-MIB的吸附動力線 57 圖4-4 鳳山原水中Geosmin的吸附動力線 57 圖4-5 澄清湖原水中2-MIB的吸附動力線 58 圖4-6 澄清湖原水中Geosmin的吸附動力線 58 圖4-7 鳳山原水中WPH-PAC吸附2-MIB動力吸附模擬與預測 圖 62 圖4-8 鳳山原水中WPH-PAC吸附Geosmin之吸附動力模擬與 預測圖 63 圖4-9 澄清湖原水中WPH-PAC吸附-MIB之吸附動力模擬與預 測圖 64 圖4-10 澄清湖原水中WPH-PAC吸附Geosmin之吸附動力模擬與 預測圖 65 圖4-11 求取HSDM最佳參數之簡化步驟 66 圖4-12 不同加氯量之鳳山原水中2-MIB之吸附動力線 70 圖4-13 不同加氯量之鳳山原水中Geosmin之吸附動力線 70 圖4-14 經氯作用原水去氯後之活性碳WPH對2-MIB之吸附動 力線 72 圖4-15 經氯作用原水去氯後之活性碳WPH對Geosmin之吸附動 力線 72 圖4-16 原水經分子量分離後活性碳添加劑量與2-MIB殘留率關 係圖 75 圖4-17原水經分子量分離後活性碳添加劑量與Geosmin殘留率關 係圖 75 圖4-18 鳳山原水之FTIR分析結果:原水添加5mg/L NaOCl 78 圖4-19 鳳山原水添加5mg/L NaOCl之FTIR分析結果: (a)MW <10000,(b)MW <5000,(c)MW <1000 79 圖4-20 鳳山原水之FTIR分析結果:原水添加15mg/L NaOCl 80 圖4-21 鳳山原水添加15mg/L NaOCl之FTIR分析結果: (a)分子量<1000,(b)分子量<5000,(c)分子量<10000, (d)未分離之原水 81 圖4-22 鳳山原水之FTIR分析結果:原水添加30mg/L NaOCl 82 圖4-23 鳳山原水添加30mg/L NaOCl之FTIR分析結果: (a)分子量<1000,(b)分子量<5000,(c)分子量<10000, (d)未分離之原水 83 圖4-24 鳳山原水添加5mg/L NaOCl 不同反應時間下之TOC 分布 85 圖4-25 鳳山原水添加15mg/L NaOCl 不同反應時間下之TOC 分布 85 圖4-26 鳳山原水添加30mg/L NaOCl 不同反應時間下之TOC 分布 86 圖4-27 鳳山原水中FS-PAC吸附2-MIB之吸附動力預測 89 圖4-28 鳳山原水中FS-PAC吸附Geosmin之吸附動力預測 90 圖4-29 添加FS-PAC 5mg/L時Jar-test、鳳山實廠流程及HSDM 模式預測2-MIB殘留率之比較圖 91 圖4-30 添加FS-PAC 10mg/L時Jar-test、鳳山實廠流程及HSDM 模式預測Geosmin殘留率之比較圖 91 圖4-31 添加FS-PAC 20mg/L時Jar-test、鳳山實廠流程及HSDM 模式預測2-MIB殘留率之比較圖 92 圖4-32 添加FS-PAC 5mg/L時Jar-test、鳳山實廠流程及HSDM 模式預測Geosmin殘留率之比較圖 92 圖4-33 添加FS-PAC 10mg/L時Jar-test、鳳山實廠流程及HSDM 模式預測Geosmin殘留率之比較圖 93 圖4-34 添加FS-PAC 20mg/L時Jar-test、鳳山實廠流程及HSDM 模式預測Geosmin殘留率之比較圖 93

    American Society of Testing and Materials. (2000). Standard Practice for the Soild Phase Microextraction(SPME) of Water and Its Headspace for the Analysis of Volatile and Semi-Volatile Organic Compounds,. ASTM D-6520-00, West Conshohocken, PA, USA.

    APHA, AWWA, and WPCF. (2000). Supplement to Standard Methods for the Examination of Water and Wastewater, 20th ed., Denver, Colorado, USA.

    Atkins, P.F., Jr., Scherger, D.A., Barnes, R.A. and Evans, F.L.(1973). Ammonia Removal by Physical-Chemical Treatment, J.Water Poll. Control Fed., 45, 2372-2388.

    Bauer, R.C. and Snoeyink, V.L. (1973). Reactions of Chlorammines with Activated Carbon, J. WPCF, 45, 2290.

    Bruchet, A., Hochereau, C., Gogot, C., Codiassa, D. (1998). Taste and Odor Episodes in Drinking Waters:Solved and Unsolved Case Studies and Needs for Future Research, Proceeding of 4-th International Workshop on Drinking Water Quality Management and Treatment Technology, March 4-5, 137-147, Taiwan, R.O.C.

    Burlingame, G.A., Dann, R.M., and Brock, G.L. (1986). A Case Study of Geosmin in Philadelphia’s Water., Jour. AWWA, 78, 56-61.

    Butterworth, R. (1998). Review of Documents Investigating Taste and Odor Abatement Options: City of Chicago Department of Water, In AWWARF Taste and Odor Workshop, July 23-24, 1998, Chicago, Ill.

    Buttery, R.G. and Lin, L.C. (1973). Earthy Aroma of Potatoes., J. Agric. Food Chem., 21, 745.

    Chen, G., Dussert, B. W. and Suffet, I. H. (1997). Evaluation of Granular Activated Carbon for Removal of Methyl Isoborneol to Below Odor Threshold Concentrations in Drinking Water, Wat. Research, 31, 1155-1163.

    Considine, R., Denoyel R., Pendleton, P., Schumann, R. and Wong, S.H. (2001). The Influence of Surface Chemistry on Activated Carbon Adsorption of 2-Methylisoborneol from Aqueous Solution, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 179, 271-280.

    Cook, D., Newcombe, G., Sztajnbok, P. (2001). The Application of Powdered Activated Carbon for MIB and Geosmin Removal: Predicting PAC Doses in Four Raw Waters, Wat. Res. 35, 1325-1333.

    Crittenden, J.C., Luft, P. and Hand, D.W. (1985). Prediction of Multicomponent Adsorption Equilibria in Background Mixtures of Unknown Composition., Wat. Res. 19, 1537

    Dougherty, J.D., and Morris, R.L. (1967). Studies on the Removal of Actinomtcete Musty Tastes and Odors in Water Supplies., J. Am. Water Works Assoc., 59, 1320.

    Duguet, J., Mallevialle, J., Ho, J., and Suffet, I.H. (1995). Oxidation Processes: Chlorine and Chloramines, In Advances in Taste-and-Odor Treatment and Control, Ed. by Suffet, I.H., Mallevialle, J., and Kawczynski, American Water Works Association, Denver, Coloroda, USA.

    Faust, S.D. and Aly, O.M. (1978). Adsorption Processes for Water Treatment, Butterworth Publishers, Montvale Avenus, Stoneham.

    Ficek, K.J., and Vella, P.A. (1998). Potassium Permanganate pretreatmnet for taste and odor control, In AWWARF Taste and Odor Workshop, July 23-24, 1998, Chicago, Ill

    Gerber, N.N., and Lechevalier, H.A. (1965). Geosmin, An Earthy-Smelling Substance Isolated from Actinomycetes, Appl. Microbiol., 13, 935-938.

    Gillogly, T.E.T., Snoeyink, V.L., Elarde, J.R., and Royal, E.P. (1998). Effect of Chlorine on PAC’s Ability to Adsorb MIB., J. Am. Water Works Assoc. 90, 107-114.

    Gillogly, T.E.T., Snoeyink, V.L., Elarde, J.R., Wilson, C.M. and Royal, E.P. (1998). 14C-MIB Adsorption on PAC in Natural Water., J. Am. Water Works Assoc. 90, 89-108.

    Gillogly, T.E.T., Snoeyink, V.L., Newcombe, G., Elarde, J.R. (1999a). A Simplified Method Determine the Powered Activated Carbon Dose required to Remove 2-Methylisobornel., Wat. Sci. Tech. 40, 59-64.

    Gillogly, T.E.T., Snoeyink, V.L., Vogel J.C., Wilson, C.M. and Royal, E.P. (1999b). Determining Gac Bed Life., J. Am. Water Works Assoc. 91, 98-110.

    Glaze, W.H. et al. (1990). Evaluating Oxidants for the Removal of Model Taste and Odor Compounds from a Municipal Water Supply, J. Am. Water Works Assoc, 82, 79-84.

    Graham M.R., Summers R.S. Simpson M.R. and Macleod B.W.(2000). Modeling equilibrium adsorption of 2-methylisoborneol and geosmin in natural waters., Wat. Res. 34, 2291-2300.

    Graham M.R., Najm, I. N., Summers R.S., Simpson M.R. and Macleod B.W. and Cummings Laura (2000). Optimization of Powdered Activated Carbon Application for Geosmin and 2-MIB Removal. AWWARF and AWWA, Denver, CO.

    Hargesheimer, E.E., and Watson, S.B. (1996). Drinking Water Treatment Options for Taste and Odor Control., Wat. Res. 30, 1423-1430.

    Huang, C., Benschoten, J.E.V. and Jensen, J.N. (1996). Adsorption Kinetics of MIB and Geosmin., J. Am. Water Works Assoc. 88, 116-128.

    Huang, W.J. and Yeh, H.H. (1999). Reaction of Chlorine With NOM Adsorbed on Powered Activated Carbon., Wat. Res. 33, 65-72.

    Hwang, S.C., Larson, R.A. and Snoeyink, V.L. (1990). Reactions of Free Chlorine with Substituted Anilimes in Aqueous Solution and on Granular Activated Carbon., Wat. Res. 24, 427.

    Ishizaki, C. and Cookson, J.T. (1974). Influence of Surface Oxides on Adsorption and Catalysis with Activate Carbon, A.J. Rubin ed., Ann Arbor Science, Ann, Arbor, MI.

    Jensen, S.E., Anders, C.L., Goatcher, L.J., Perley, T., Kenefick, S. and Hrudey, E. (1994). Actinomycetes as a Factor in Odour Problems Affecting Drinking Water From the North Saskatchewan River, Wat. Res., 28, 1393-1401.

    Knappe, D.R.U., Snoeyink, V.L., Prados, M.J., Bourbigot, M.M. and Dagois, G. (1993). Adsorption of Atarzine by Powdered Activated Carbon. In: Proceedings of the American Water Works Association Annual Conference.

    Knappe, Detlef, R.U., Matsui, Y., Snoeyink, V.L., Roche, P., Prados, M.J. and M.-M. Bourbigot, (1998). Predicting the Capacity of Powered Activated Carbon for Trace Organic Compounds in Nature Waters, Environ. Sci. Technol., 32, 1694-1698.

    Kim, B.R., Schmitz, R.A. Snoeyink, V.L. and Tauxe, G.W. (1978). Analysis of Models for Dichloramine Removal by Activated Carbon in Batch and Packed-Bed Reactors Using Quasilinearization and Orthogonal Collocation Methods, Wat. Res., 12, 317-326.

    Lalezary, S., Pirbazari, M., McGuire, M.J. (1986a). Oxidation of Five Earthy-Musty Taste and Odor Compound, J. Am. Water Works Assoc., 78, 62.

    Lalezary, S., Pirbazari, M., McGuire, M.J. (1986b). Evaluating Activated Carbon for Removing Low Concentrations of Taste-and-Odor Producing Organics., J. Am. Water Works Assoc., 78, 76.

    Lalezary-Craig, S., Pirbazari, M., Dale, M.E., Tanaka, T.S., and M.J. McGuire, (1988). Optimizing the Removal of Geosmin and 2-Methylisoborneol by Powered Activated Carbon, Jour. J. Am. Water Works Assoc., 80, 73-80.

    Lawrence, A.W., Howard, W.S. and Rubin, A.K. (1970). Ammonia-Nitrogen Removal from Wastewater Effluents by Chlorination, 4th Mid-Atlantic Industrial Waste Conference, University of Delaware.

    Lin, S.D. (1976). Source of Tastes and Odors in Water, Water and Sewage Works, 123, 101-104.

    Lin, T.F., Wong, J.Y., Yang, F.C., and Yeh, H.H. (2001).Odor Removal at the Pilot Plant of Cheng-Ching Lake Water Works, Proceedings of First IWA Asia-Pacific Regional Conference, Fukuoka, Japan, September 12-15, 793-798.

    McCreary, J.J. and Snoeyink, V.L. (1980). Characterization and Activated Carbon Adsorption of Several Humic Substances, Wat. Res., 14, 151-160.

    McCreary, J.J. and Snoeyink, V.L. (1981). Reaction of Free Chlorine with Humic Substances before and after Adsorption on Activated Carbon, Environ. Sci. Technol., 15, 193-197.

    McGuire, M.J. and Suffet, I.H. (1984). Aqueous Chlorine/Activated Carbon Interactions, Jour. Environ. Eng. ASCE, 110, 629-645.

    McGuire, M.J. (1999). Advances in Treatment Processes to Solve Off-Flavor Problems in Drinking Water., Wat. Sci. Tech., 40, 153-163.

    Medsker, L.L., Jenkins, D. and Thomas, J.F. (1968). An Earthy-Smelling Comppound Associated With Blue-Green Algae and Actinomycetes, Envir. Sci. Technol., 2, 461-464.

    Morris, R.L. (1962). Actinomycetes Studies as Taste and Odor Cause, Water and Sewage Works., 109, 76-77.

    Myers, A.L. and Prausnitz, J.M. (1965). Thermodynamics of Mixed-gas Adsorption., Am. Inst. Chem. Engng J. 11, 121-127.

    Najm, I.N., Snoeyink, V.L., Suidan, M.T., Lee, C.H. and Richard, Y. (1990). Effect of Particle Size and Background Natural Organics on the Adsorption Efficiency of PAC., J. Am. Water Works Assoc., 82, 65-73.

    Najm, I. N., Snoeyink, V.L. ,and Richard, I. (1991). Effect of Initial Concentration of a SOC in Natural Water on Its Adsorption by Activated Carbon., J. Am. Water Works Assoc., 83, 57-63.

    Najm, I. N. (1991). Using Powdered Activated Carbon:A Critical Review., J. Am. Water Works Assoc., 83, 65-76.

    Najm, I. N., Snoeyink, V.L., Galvin, T.L. and Degremont Y.R. (1991). Control of Organic Compounds with Powdered Activated Carbon. AWWARF and AWWA, Denver, CO.

    Persson, P.E. (1980) Sensory Properties and Analysis of Two Muddy Odour Compounds, Geosmin and 2-Methylisoborneol, in Water and Fish, Water Research, 14, 1113-1118.

    Puri, B.R. (1980) Carbon Adsorption of Pure Compounds and Mixtures from Solution Phase, Activated Carbon Adsorption of Organic from the Aqueous Phase, Vol.1, Ann Arbor Science, Ann, Arbor, MI

    Puri, B.R. (1983) Physicochemical Aspects of Carbon Affecting Adsorption from the Aqueous Phase, Treatment of Water by Granular Activated Carbon, Advances in Chemistry Series 202, Amer. Chem. Soc., Washington, D.C.

    Randtke, C.J. and Prausnitz, J.M. (1972). Thermodynamics of Multi-solute Adsorption from Dilute Liquid Solutions., Am. Inst. Chem. Engng J. 18, 761-768.

    Rittmann, B.E., Grantzer, C.J., and Montiel, A. (1995). Biological Treatment to Control Taste-and-Odor Compounds in Drinking Water treatment, In Advances in Taste-and-Odor Treatment and Control, Ed. by Suffet, I.H., Mallevialle, J., and Kawczynski, American Water Works Association, Denver, Coloroda, USA.

    Shirey, R.E. (2000). Optimization of extraction conditions and fiber selection for semivolatile analytes using solid-phase microextraction., Journal of Chromatographic Science., 38, 279-288.

    Silvey, J.K.G., Russell, J.G., Redden, D.R. and McCormick, W.C. (1959). Actinomycetes and Common Tastes and Odors, J. Am. Water Works Assoc., 50, 1018-1026.

    Simpson, R. (1998). Practical Aspects of PAC Application For Taste and Odor Control, In AWWARF Taste and Odor Workshop, July 23-24, 1998, Chicago, Ill.

    Smith, E.H., and Weber, Jr., W.J. (1990). Comparative Assessment of Chemical and Adsorptive Characteristics of Leachates from a Municipal and an Industrial Landfill., Water, Soil and Soil Pollution, 53, 279.

    Snoeyink, V.L., Lai, H.T., Johnson, J.H. and Young, J.F. (1974). Active Carbon:Dechlorination and the Adsorption of Organic Compounds, Chemistry of Water Supply, Treatment and Distribution, A.J. Rubin, ed., Ann Arbor Science, Ann Arbor, Mich., 233-295.

    Snoeyink, V.L. (1981). Organic Compounds Produce by the Aqueous Free-Chlorine-Activated Carbon Reaction, Environ. Sci. Technol., 1, 188-192.

    Sontheimer, H., Crittenden, J.C. and Summers, R.S. (1988). Activated Carbon for Water Treatment. 2nd ed. DVGW-Forschungsstelle, Karlsruhe, Germany.

    Suffet, I.H., Mallevialle, J. and Kawczynski E. eds. (1995a). Advances in Taste-and-Odor Treatment and Control. Water Works Association Research Foundation, Denver, Colorado, USA.

    Suffet, I.H., and Wable, O. (1995b). Removal of Taste-and-Odor Cmpounds by Activated Carbon, In Advances in Taste-and-Odor Treatment and Control, Ed. by Suffet, I.H., Mallevialle, J., and Kawczynski, American Water Works Association, Denver, Coloroda, USA.

    Suffet, I.H., Khiari, D., and A. Bruchet (1999). The Drinking Water Taste and Odor Wheel for the Millennium: Beyond Geosmin and 2-Methylisoborneol, Wat. Sci. Tech., 40, 1-13.

    Suidan, M.T. (1976). Performance Dreictions for the Removel of Aqueous Dhlorine Packed Beds of Granular Activated Carbon., AICHE Symposium Series, 73, 18-24.

    Suidan, M.T., and Snoeyink, V.L. (1977). Reaction of Aqueous HOCl with Activated Carbon, J. Environ. Eng. Div., ASCE, 103, 667-684.

    Suidan, M.T., Chacey, K.A. and Gross, W.H. (1978). Pulsating Bed Activated Carbon Dechlorination, J. Environ. Eng. Div., ASCE, 104, 1223.

    Świetlik J., Raczyk-Stanisławiak U., Biłozor S., Ilecki W., Nawrocki J. (2002). Adsorption of natural organic matter oxidized with ClO2 on granular activated carbon, Wat. Res., 36, 2328-2336.

    Voudrias E.A., Larson, R.A. and Snoeyink, V.L. (1985). Effects of Activated Carbon on the Reaction of Free Chlorine with Phenol, Environ. Sci. Technol., 19, 441-449.

    Voudrias E.A., Larson, R.A. and Snoeyink, V.L. (1985). Effects of Activated Carbon on the Reaction of Free Chlorine with Phenol, Environ. Sci. Technol., 19, 909-915.

    Wang, G.S. (1994). Removal of Atrazine from Drinking Water by Activated Carbon Adsorption., Ph.D. Thesis, State University of New York at Albany School.

    Watson, S.B., Brownlee, B.,Stachwill,T., and Hargesheimer E.H. (2000). Quantitive Analysis of Trace Levels of Geosmin and MIB in Source and Drinking Water Using Headspace SPME., Wat. Research, 34, 2818-2828.

    White, G.C. (1992). Handbook of Chlorination and Alternative Disinfectants, 3nd ed., Van Nostrand Reinhold Company, New York, 184-185.

    Wood, S., Williams, S.T. and White, W.R. (1983). Microbes as a Sources of Earthy Flavours in Potable Water-A Review, Intl. Biodeterioration Bull, 19, 83.

    Yugi, M. et al. (1983). Odor Problems in Lake Biwa, Wat. Sci. Tech., 15, 311.

    Zimmer, G., Brauch, H.J. and Sontheimer, H. (1989). Activated Carbon Adsorption of Organic Pollutants., Adv. Chem. Ser. 219(Aquat. Humic Sub.), 579-596.

    陳是瑩、李俊德、曾怡禎 (1982)。澄清湖浮游生物與放線菌繁殖狀況對水源臭味之影響(一), 國立成功大學環境工程研究報告第21號。

    陳是瑩、曾怡禎 “澄清湖藻類圖鑑”,(1986)。

    李俊德、陳是瑩、王月花、鄭明蕊、李明輝 (1985)。 澄清湖水源臭味控制方法之研究,國立成功大學環境工程研究報告第45號。

    溫清光等 (1995) 澄清湖曝氣工程效益評估, 國立成功大學環境工程研究所研究報告。

    葉宣顯、鄭幸雄、曾怡禎、林財富 (2000)。 澄清湖高級淨水處理模型廠試驗研究 (第二年)。成功大學環境工程系研究報告。

    陳鎧湧(1992),粉狀活性碳對水中微量有機物之研究,國立成功大學環境工程系碩士論文。

    翁玉芬(1993),水中超微量有機異臭味物質Geosmin之分析及去除,國立交通大學環境工程研究所碩士論文。

    黃文鑑(1997),混凝、吸附對溶解性有機物去除及受預氯影響之研究,國立成功大學環境工程系博士論文。

    高小萍、林財富(1998),水中異臭味物質geosmin及2-MIB分析技術之研究,第十六屆自來水研討會論文集,283-300。

    高小萍(1998),水中異臭味物質的分析,國立成功大學環境工程研究所碩士論文。

    汪俊育(2000),南台灣代表性水源地臭味問題之研究,國立成功大學環境工程系碩士論文。

    汪俊育、林財富 (2000),鳳山與港西淨水廠臭味問題之研究, 第十七屆自來水研究發表會, 中華民國自來水協會, 嘉義市, 49-65.

    洪旭文、林財富 (2000),粉狀活性碳控制水源中有機性臭味之探討, 自來水會刊, 19(4), 14-37.

    楊豐誠 (2001),應用粉狀活性碳去除原水中2-MIB之研究,國立成功大學環境工程系碩士論文。

    劉家玲 (2002),預氯程序對粉狀活性碳吸附2-MIB之影響,國立成功大學環境工程系碩士論文。

    下載圖示 校內:立即公開
    校外:2003-07-29公開
    QR CODE