簡易檢索 / 詳目顯示

研究生: 陳銀發
Chen, Yin-Fa
論文名稱: 添加Cu對Sn-Ag-Sb無鉛銲料銲點微結構與剪切強度之影響
The Effect of Different Cu Addition on The Microstructure and Shear Strength of Lead-Free Sn-Ag-Sb Solder Joints
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: Cu6Sn5化合物無鉛銲料熔點剪切強度界面微結構
外文關鍵詞: shear strength, interfacial microstructure, melting point, Cu6Sn5 compound, lead-free solder
相關次數: 點閱:153下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究探討添加0~1.5wt%Cu對Sn-3Ag-2Sb無鉛銲料之熔點與微結構的影響,以及與Cu基板銲接後界面IMC層之變化;同時利用單邊搭接(Single Lap)試件及高溫儲存來評估Cu添加量對銲點剪切強度與抗熱性的影響。

      實驗結果顯示Sn-3Ag-2Sb-xCu銲料熔點隨著Cu的添加而下降, Sn-3Ag-2Sb的熔點為224.8℃,添加0.5、1.0及1.5%Cu銲料的熔點分別降低為220.1、219.8及219.7℃,隨著Cu添加量的增加固、液相區間有縮小之趨勢。Sn-3Ag-2Sb添加0.5%Cu時,Cu固溶於-Sn中,微結構仍與Sn-3Ag-2Sb相似,為Ag3Sn與-Sn所組成的環狀結構,但整體組織變細。當Cu添加量超過1.0%時,在β-Sn中生成Cu6Sn5化合物。Cu6Sn5有兩種形貌,在1.0%Cu時,形貌為片狀組織;Cu含量高達1.5%,Cu6Sn5則為柱狀,其中粗大的柱狀Cu6Sn5成兩端封閉空心管狀,細小Cu6Sn5為實心棒狀。在Sn-3Ag-2Sb/Cu與Sn-3Ag-2Sb-1.5Cu/Cu的界面上均有長條狀化合物,經深腐蝕分別為板狀Ag3Sn與柱狀Cu6Sn5化合物且經長時間熱儲存均會粗大化。Sn-3Ag-2Sb-xCu銲料與Cu接合,Cu會快速反應融入銲料,界面上Sn與Cu反應生成扇貝狀之Cu6Sn5化合物,隨著Cu添加量的增加,IMC會增厚,且Cu6Sn5晶粒較大。在Sn-3Ag-2Sb-1.5Cu/Cu之界面IMC層經625小時高溫熱儲存厚度大幅增加,由3.2μm成長至6.9μm,而Cu6Sn5晶粒數目由多變少,晶粒大小由3μm成長至7μm左右,造成界面層粗糙度變大。

      剪切測試顯示Sn-3Ag-2Sb未經儲存之剪切強度為58.5MPa,添加0.5、1.0及1.5%Cu分別為66.3、91.8及115.5MPa,剪切強度隨Cu添加量的增加而升高。高溫儲存後,所有銲點的強度隨時間增加而下降。625小時熱儲存後,Sn-3Ag-2Sb強度為46.1MPa,添加0.5、1.0及1.5%Cu分別為52.3、76.5及78.1MPa。未經儲存之銲點破壞面大多發生在銲料中,隨儲存時間增加則傾向在界面發生;破裂面在銲料時強度最高,其次為破裂面在部分銲料、部分界面,破裂面在界面強度最低。綜合銲點剪切強度、抗熱性與延展性而言,添加1.0% Cu則具有較佳的性質表現。

     The effects of adding 0~1.5wt% Cu into Sn-3Ag-2Sb lead-Free solder on the melting point and microstructure as well as the interfacial IMC(Intermetallic Compound) layer are studied in this reseach. The Single Lap specimens and high temperature storage evaluate the influences of different Cu addition for the shear strength of solder joint and thermal resistance.

     Experimental results show that melting points of the Sn-3Ag-2Sb-xCu solder are decreased with Cu additions. The melting points are 224.8˚C(Sn-3Ag-2Sb)、220.1˚C(adding 0.5%Cu)、219.8˚C(adding 1.0%Cu)and 219.7˚C(adding 1.5%Cu)respectively. Cu solved into -Sn matrix when Cu addition is lower than 0.5%. The microstructures are composed of Ag3Sn and -Sn in form of circular structure. When Cu addition is more than 1.0%, Cu6Sn5 compounds can be found in the solder. Cu6Sn5 has two kind of shape, the platelet-type as can be found by 1.0%Cu addition; Cu content is up to 1.5%, Cu6Sn5 is column, among them coarse column Cu6Sn5 both ends and seal the hollow tube, thin Cu6Sn5 is needle-like. When Sn-3Ag-2Sb-xCu solder combine with Cu substrate, Cu solve into solder fastly, due to Sn atoms react with Cu atoms to form scallop shape Cu6Sn5 compounds. The compounds at the interfacial surface of Sn-3Ag-2Sb/Cu and Sn-3Ag-2Sb-1.5Cu /Cu appear plate Ag3Sn and column Cu6Sn5 respectively by deep etching. Both compounds become coarse after high temperature storage. The IMC layer thickness can be raised with the Cu addition increasing.

     The shear strength results show that the average shear strength of as-soldering Sn-3Ag-2Sb solder joint is 58.5MPa. The shear strength can be raised with the Cu addition increasing. The strength of 0.5, 1.0, 1.5%Cu, are 52.3, 76.5, 78.1 MPa respectively. The shear strength of the whole solder joint decrease distinctly after 150℃ thermal storage. After 625 hours storage the Strength of Sn-3Ag-2Sb solder is 46.1MPa. The strength of adding 0.5, 1.0, 1.5%Cu are 52.3、76.5、78.1MPa. The fracture position of solder joints at as-soldered occurred at the inside of solder. However, the fracture position tended to occur at the interfacial surface with storage time increasing. It is highest in intensity to break at the inside of solder, secondly break at the surface on some solder , some interface, it is lowest in intensity to break at the interfacial surface. According to the shear strength and thermal resistance and ductility, the solder adding 1.0%Cu has better behaviors.

    授權書 Ⅰ 口試合格證書 Ⅱ 中文摘要 Ⅲ 英文摘要 Ⅴ 誌謝 Ⅶ 總目錄 Ⅷ 表目錄 Ⅹ 圖目錄 XI 一、前言 1 二、文獻回顧 4 2-1 無鉛銲料發展概 6 2-2 Sn-Ag- X三元合金銲料 12 2-3 銲點機械強度測試 17 三、實驗步驟與方法 24 3-1 實驗規劃 24 3-2 試件製備 27 3-3 實驗內容 32 四、結果與討論 35 4-1 Sn-Ag-Sb-xCu銲料之性質 35 4-1-1添加Cu對Sn-Ag-Sb銲料熔點之影響 35 4-1-2 Sn-Ag-Sb-xCu銲料之微結構 40 4-2 Sn-Ag-Sb-xCu銲料與Cu之銲接性質 57 4-2-1 Sn-Ag-Sb-xCu銲料與Cu銲接界面層微結構分析 57 4-2-2界面IMC層成長與形貌變化 66 4-3 Sn-Ag-Sb-xCu銲點之機械性 73 4-3-1 Sn-Ag-Sb-xCu銲料微硬度 73 4-3-2剪切強度測試 75 五、結論 88 六、建議與未來方向 90 七、參考文獻 91 著作權聲明 96 自 述 97

    1.Mulugeta Abtew and Guna Selvaduray, "Lead-Free Solder in Microelectronics," Materials Science and Engineering R, Vol. 27, 2000, pp. 95-141
    2.Laura J. Turbini, Gregory C. Munie, Dennis Bernier, Jurgen Gamalski and David W. Bergman, "Examining the Environmental Impact of Lead-Free Soldering Alternatives," IEEE Transactions on Electronics Packaging Manufacturing. Vol. 24, No. 1, 2001, pp. 4-9
    3.編輯室, "無鉛焊接的開發動向," 電子與材料, 第一期, pp.78-84, 1999
    4.ESPEC Technology Report, No. 13, 2002, pp. 1-8
    5.V.I. Igoshev, U.Mihon and et al., "Fracture of Sn-3.5%Ag Solder Alloy Under Creep," Journal of Electronic Materials, Vol.29, No.12, 2000, pp.1356-1361
    6.饒慧美, "添加Sb、Cu對無鉛銲料Sn-Ag銲點之機械性質及微結構研究," 國立成功大學機械研究所, 碩士論文, 2000.6
    7.廖天龍, "添加Sb 對Sn-Ag 無鉛銲料之銲點剪切強度影響," 國立成功大學機械研究所, 碩士論文, 2001.6
    8.楊傳鏈, "添加Sb 對Sn-Ag 無鉛銲料銲點微結構與剪切強度之影響," 國立成功大學機械研究所, 碩士論文, 2002.6
    9.李政賢, "Sn-Ag-xSb無鉛錫銲接點微結構與低週疲勞之研究," 國立成功大學機械研究所, 碩士論文, 2003.6
    10.宋立文, ”冷卻速率及Cu/Ni-P/Au 金屬層對Sn-Ag-xSb無鉛錫銲接點之剪切強度特性及界面微結構的影響”,2004
    11.Yoshiharu Kariya and Masahisa Otsuka, "Effect of Bismuth on the Isothermal Fatigue Properties of Sn-3.5mass%Ag Solder Alloy," Journal of Electronic Materials, Vol. 27, No. 7, 1998, pp. 866-870
    12.Yoshiharu Kariya and Masahisa Otsuka, "Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) Solder Alloy," Journal of Electronic Materials, Vol. 27, No. 11, 1998, pp. 1229-1235
    13.S. Jin, "Developing Lead-Free Solders: A Challenge and Opportunity," JOM: the Journal of the Minerals, Metals & Materials Society, Vol.45, 1993.7, pp..13
    14.N. C. Lee, "Getting Ready for Lead-free Solder," Soldering &Surface Mount Technology, No.26, 1997.7, pp.65-68
    15.David Suraski and Karl Seelig, "The Current Status of Lead-Free Solder Alloys," IEEE Transactions on Electronics Package Manufacturing, Vol.24, No.4, 2001, pp.244-248
    16.Mulugeta Abtew, Guna Selvaduray, "Lead-Free Solders in Microelectronics," Materials Science and Engineering: R: Reports, Vol.27, Issue 5-6, 2000.6, pp.95-141
    17.K. Zeng, K.N. Tu, "Six Case of Reliability Study of Pb-Free Solder Joient in Electronic Packaging Technology," Materials Science and Engineering R, Vol.38, 2002, pp.55-105
    18.Anton Zoran Miric and Angela Grusd, "Lead-Free Alloys," Soldering & Surface Mount Technology, Vol.10, 1998, pp.19-25
    19.陳信文, "無鉛銲料簡介," 電子與材料, 第一期, 1999, pp.74-77
    20.Dennis R. Olsen, Keith G. Spanjer, United State Patent, Patent Number : 4,170,472, 1979
    21.C.L. Lin, J.L. Ou, H.C. Chen and R.K. Shiue, "The Study of Sn-Zn Based Lead-Free Solders on Au/Ni/Cu Substrate," 2002材料年會論文集, 台灣, 台灣大學, 2002.11
    22.J.K. Lin, Ananda De Silva, Darrel Fear and Yifan Guo, "Characterization of Lead-Free Solders and Under Bimp Metallurgies for Flip-Chip Package," IEEE 2001 Electronic Components and Technology Conference, 2001
    23.Wenge Yang, Lawwrence E. Felton, Robert W. Messler, JR., "The Effect of Soldering Process Variable on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints," Journal of Electronic Materials, Vol.24, Issue 10, 1995, pp.1465-1472
    24.J.K. Lin, Ananda De Silva, Darrel Fear and Yifan Guo, "Characterization of Lead-Free Solders and Under Bimp Metallurgies for Flip-Chip Package," IEEE 2001 Electronic Components and Technology Conference, 2001
    25.Mulugeta Abtew, Guna Selvaduray, "Lead-Free Solders in Microelectronics," Materials Science and Engineering: R: Reports, Vol.27, Issue 5-6, 2000.6, pp.95-141
    26.Y. Miyazawa ,T. Ariga, "Microstructural Change and Hardness of Lead Free Solder Alloys," Environmentally Conscious Design and Inverse Manufacturing, 1999. Proceedings. EcoDesign '99: First International Symposium, 1999, pp.616-619
    27.Y. Miyazawa and T. Ariga, "Influences of Aging Treatment on Microstructure and Hardness of Sn-(Ag,Bi,Zn) Eutectic Solder Alloys," Materials Transactions, Vol. 42, No.5, 2001, pp.776-782
    28.M. McCormack, H. S. Chen, G. W. Kammlott, S. Jin, "Significantly Improved Mechanical Properties of Bi-Sn Solder Alloys by Ag-Doping," Journal of Electronic Materials, Vol. 26, Issue 8, 1997, pp.954-958
    29.T.Y. Lee, W.J. Choi, and K.N. Tu, "Morphology, Kinetics, and Thermodynamics of Solid-state Aging of Eutectic SnPb and Pb-Free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu," Journal of Materials Research, Vol.17, No.2, 2002, pp.291-301
    30.N. C. Lee, “Getting Ready for Lead-Free Solder,” Soldering & Surface Mount Technology, No. 26, 1997.7, pp.65-68
    31.ESPEC Technology Report, No. 13, 2002, pp. 1-8
    32.C. F. Chen(Motorola), S.K. Lahiri(SMA), P.Yuan(Motorola) and J.B.H.HOW(Motorola),"An Intermetallic Study Joints with Sn-Ag-Cu Lead-Free Solder,"Electronics Packing Technology Conference, 2000
    33.Yoshiharu Kariya and Masahisa Otsuka, "Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) Solder Alloy," Journal of Electronic Materials, Vol. 27, No. 11, 1998, pp. 1229-1235
    34.S. W. Yoon, C. J. Park, S. H. Hong, J. T. Moon, I. S. Park and H. S. Chun, "Interfacial Reaction and Solder Joint Reliability of Pb-Free Solders in Lead Frame Chip Scale Packages (LF-CSP)," Journal of Electronic Materials, Vol. 29, No. 10, 2000, pp. 1233-1240
    35.D. R. Frear, J. W. Jang, J. K. Lin and C. Zhang, "Pb-Free Solder for Flip-Chip Interconnects," JOM, 2001
    36.K.S. Kim , S.H. Huh , K. Suganuma, "Effects of Intermetallic Compounds on Properties of Sn–Ag–Cu Lead-Free Soldered Joints,"Journal of Alloys and Compounds Vol.352 ,2003, pp.226–236
    37.Rodney J. Maccabe and Morris E.Fine, "Creep of Tin, Sb-Solution- Strengthened Tin, and SbSn-Precipitate-Strengthened Tin," Metallurgical and Materials Transaction A, Vol.33, 2002, pp.1531-1539
    38.B. Predel and W. Schwermann, "Constitution and Thermodynamics of the Antimony-Tin System," Journal of the Institute of Metals, Vol. 99, 1971, pp. 169-173
    39.G. Petzow and G. Effenberg edit, "Ternary Alloys Vol. 2," VCH Verlagsgesellschaft, 1988
    40.D. Bruce Masson and Brink K. Kirkpatrick, "Equilibrium Solidification of Sn-Ag-Sb Thermal Fatigue-Resistant Solder Alloys," Journal of Electronic Materials, Vol. 15, No. 6, 1986
    41.許媛婷,李驊登, "利用Sn/Sb及Sn3.5Ag/Sb擴散實驗研究Sb在無鉛銲料系Sn-Ag系統中之行為, " 專題研究, 2004.7
    42.陳明宏, 李驊登, 饒慧美, 廖天龍, "界面金屬間化合物對錫銲接點破壞行為之影響," 第七屆破壞科學研討會, 墾丁福華, 2002
    43.1997 CERCLA Priority List of Hazardous Substances, USA
    44.黃淑禛, 李巡天, 陳凱琪, "新世代半導體封裝材料技術與發展趨勢," 工業材料雜誌, 170期, 90年2月, pp. 86-99
    45.林金雀, "IC構裝材料需求及技術發展趨勢," 工業材料雜誌, 170期, 90年2月, pp. 67-73
    46.ESPEC Technology Report, No. 13, 2002, pp. 1-8
    47.王照中, "電子產品之溫度循環試驗規範簡介," 電子檢測與品管, No.42, 2000.4, pp.44-48
    48.X.Q. Shi, H.L.J. Pang, W. Zhou and Z.P. Wang, "Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy," International Journal of Fatigue, Vol. 22, 2000, pp. 217-228
    49.John H. L. Pang, Kwang Hong Tan, Xunqing Shi and Z. P. Wang, "Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen," IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 1, 2001
    50.D. J. Xie, Yan C. Chan, J. K. L. Lai and I. K. Hui, "Fatigue Life Estimation of Surface Mount Solder Joints," IEEE Transactions on Component, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 3, 1996
    51.Tac-Sang Park and Soon-Bok Lee, "Mechanical Fatigue Tests of Solder Joint under Mixed-mode Loading Cases," IEEE, Intel Symposium on Electronic Materials and Packaging, 2001
    52.ASTM F1269-89, "Test Methods for Destructive Shear Testing of Ball Bonds," American Society for testing of Materials, 1995
    53.M.O. Alam, Y.C. Chan and K.C. Hung, "Reliability Study of The Electroless Ni-P Layer Against Solder Alloy," Microelectronics Reliability, Vol.42, 2002, pp.1065-1073
    54.陳明宏, 李驊登, 饒慧美, 廖天龍, "界面金屬間化合物對錫銲接點破壞行為之影響," 第七屆破壞科學研討會, 墾丁福華, 2002
    55.http://www.nist.gov/
    56.胡順源, "Sn-Ag-xSb無鉛錫銲接點與Au/Ni-P/Cu金屬層之界面微結構與剪切強度研究," 國立成功大學機械研究所, 碩士論文, 2003.6
    57.Robert A. Galiano, Morris E. Fine, "Growth of η Phase Scallops and Whiskers in Liquid Tin-Solid Copper Reaction Couples," JOM: the Journal of the Minerals, Metals & Materials Society, 2001.6, pp.33-38
    58.Darrel Frear, Dennis Grivas, J. W. Morris Jr., "The Effect of Cu6Sn5 Whisker Precipitates in Bulk 60Sn-40Pb Solder," Journal of Electronic Materials, Vol.16, Issue 5, 1987, pp.181-186
    59.Yujing Wu, Elizabeth G. Jacobs, Cyrus Pouraghabgher, and Russell F. Pinizzotto, "In-Situ TEM Study of Copper-Tin Intermetallic Formation," Materials Research Society Symposium Proceeding, Vol. 323, 1994, pp.165-170
    60.H. K. Kim, H. K. Liou, and K. N. Tu, "Three-dimensional Morphology of a Very Rough Interface Formed in the Soldering Reaction between Eutectic SnPb and Cu," Applied Physics Letters, Vol. 66, Issue 18, 1995.5, pp.2337-2339
    61.H. K. Kim and K. N. Tu, "Kinetic Analysis of the Soldering Reaction between Eutectic SnPb Alloy and Cu Accompanied by Ripening," Physical Review B53, 1996, pp.16027–16034
    62.H. K. Kim and K. N. Tu, "Rate of Consumption of Cu in Soldering Accompanied by Ripening," Applied Physics Letters, Vol. 67, Issue 14, 1995.10, pp.2002-2004
    63.K. N. Tu, "Cu/Sn Interfacial Reaction: Thin-Film Case versus Bulk Case," Materials Chemistry and Physics, Vol.46, 1996, pp.217-223
    64.Z. Mei, A. J. Sunwoo, and J. W. Morris, Jr., "Analysis of Low-Temperature Intermetallic Growth in Copper-Tin Diffusion Couples," Metallurgical Transactions A, Vol. 23A, 1992.3, pp.857-864
    65.陳明宏, "添加Sb對Sn-Ag無鉛銲料銲點冶金性質與機械性質之研究," 國立成功大學機械研究所, 博士論文, 2003.7
    66.D.R. Frear, S.N. Burchett, H.S. Morgan and J.H. Lau, "The Mechanics of Solder Alloy Interconnects," Van Nostrand Reinhold, New York, 1994

    下載圖示 校內:2008-07-29公開
    校外:2008-07-29公開
    QR CODE