| 研究生: |
傅家維 Muhammad Aldila Syariz |
|---|---|
| 論文名稱: |
將卷積神經網路及遷移式學習應用於Sentinel-3影像以獲取中養湖之葉綠素-a濃度 A Convolutional Neural Network with Transfer Learning for Chlorophyll-a Concentrations Retrieval in Mesotrophic Lakes using Sentinel-3 Imagery |
| 指導教授: |
林昭宏
Lin, Chao-Hung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 外文關鍵詞: | artificial neural network, chlorophyll-a concentration, lake, overfitting, transfer learning |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Chlorophyll-a (Chla) concentrations, which serves as a phytoplankton’s substitute in inland waters, is one of leading indicators for water quality. Generally, water samples are analysed in professional laboratories, and Chla concentrations are measured regularly for the purpose of water quality monitoring. However, the limited spatial water sampling and labour-sensitive data collection make the global and long-term monitoring difficult. The developments of remote-sensing optical sensors and technologies make the long-term monitoring of Chla concentrations for an entire water body to be achievable.
The retrieval of Chla concentrations relies on empirical or analytical analyses, which generally experience difficulties from the diversity of inland waters in statistical analyses and the complexity of radiative transfer equations in analytical analyses, respectively. Previous studies proposed the utilization of artificial neural networks (ANNs) to alleviate these problems. However, ANNs they do not fully utilize the spatial and spectral information of remote sensing images in neural networks and do not consider the problem of insufficient in situ labelled data during model training which make the trained models inapplicable. In addition, a data augmentation can be used to enrich the in situ labelled data, however, an overfitting problem may arise due to higher density in a specific Chla concentration interval and lesser density in the other intervals.
In this study, a novel convolutional neural networks (CNNs) for Chla concentration retrieval called WaterNet is proposed which utilizes both spectral and spatial information of remote sensing images. In addition, an end-to-end structure that integrates feature extraction, band expansion, and Chla estimation into the neural network leads to an efficient and effective Chla concentration retrieval. A two-stage training method which based on transfer learning technique is also proposed to ease the problem of insufficient in situ samples. The proposed training method contains pre-training stage and transfer-learning stage. In the model pre-training stage, the WaterNet is pre-trained and initialized by using samples derived from an existing Chl-a concentration model. The pre-trained WaterNet is then retrained or refined by using the proposed transfer learning with in situ samples collected in five different campaigns during early 2019 in Laguna Lake of the Philippines. Before the transfer learning, data augmentation and rebalancing methods are conducted to enrich the variability and to near-uniformly distribute the in situ samples in Chla concentration space, respectively. Therefore, there are three different in situ labelled data: original data (no augmentation and rebalancing is applied), augmented data (only augmentation), and augmented-rebalanced data (augmentation and rebalancing is applied). For summary, the proposed methods in this study are WaterNet, two-stage training, and data rebalancing.
In experiments, Sentinel-3 images with the same acquisition days of in situ measurements over Laguna Lake in the Philippines were used to train and evaluate WaterNet locally. The training was conducted in a 10-fold cross validation scheme, meaning that the augmented-rebalanced in situ labelled data is divided into 10 folds where each fold is consecutively set as validation data while the others as training data. To estimate the alleviation of model overfitting, the trained WaterNet was tested by using in situ dataset in Lake Victoria of Uganda obtained in 2019, which has similar tropical state with Laguna Lake.
In evaluation, WaterNet which trained by the two-stage training using simulated and augmented-rebalanced in situ labelled data, estimated Chla concentrations in Laguna Lake waters with average root mean squared error (RMSE) of 0.372 μg/L. Furhtermore, the performance was compared to several conditions: 1) WaterNet was trained by a common one stage training, either only using simulated or augmented-rebalanced in situ labelled data, to highlight the effectiveness of two-stage training; 2) WaterNet was trained by the two-stage training using simulated and augmented in situ labelled data, to display the leverage of data rebalancing; and 3) three ANNs models (Type A: 1 hidden layer; Type B: 2 hidden layers, Type C: 3 hidden layers) was trained the two-stage training using simulated and augmented-rebalanced in situ labelled data, to show the important impact of spectral variation in neighbourhood pixels that are considered in WaterNet. The results revealed that the Chla concentrations estimation accuracy in the three conditions were 1) 2.144 μg/L (using simulated labelled data only) and 1.298 μg/L (using in situ labelled data only); 2) 0.752 μg/L (using original data) and 0.954 μg/L (using augmented data); and 1.370 μg/L (Type A), 1.429 μg/L (Type B), and 1.374 μg/L (Type C); in terms of average RMSE. This implies the effectiveness of the proposed methods compared to the other related conditions in the Chla concentrations estimation. Moreover, in testing, the trained WaterNet outperformed the other existing Chla concentrations retrieval models in empirical method, including two-band, three-band, and normalized differentiate Chla index (NDCI).
Al Shehhi, M.R., Gherboudj, I., Zhao, J., Ghedira, H., 2017. Improved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment. ISPRS J. Photogramm. Remote Sens. 133, 46–60. https://doi.org/10.1016/j.isprsjprs.2017.09.011
Aleksey Nilovich Kosarev, Leontiev, O.K., Owen, L., 2020. Caspian Sea.
Andrzej Urbanski, J., Wochna, A., Bubak, I., Grzybowski, W., Lukawska-Matuszewska, K., Łącka, M., Śliwińska, S., Wojtasiewicz, B., Zajączkowski, M., 2016. Application of Landsat 8 imagery to regional-scale assessment of lake water quality. Int. J. Appl. Earth Obs. Geoinf. 51, 28–36. https://doi.org/10.1016/j.jag.2016.04.004
Ansper, A., Alikas, K., 2019. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European Union water framework directive reporting purposes. Remote Sens. 11. https://doi.org/10.3390/rs11010064
Aptoula, E., Ariman, S., 2021. Chlorophyll-a Retrieval From Sentinel-2 Images Using Convolutional Neural Network Regression. IEEE Geosci. Remote Sens. Lett. https://doi.org/10.1109/LGRS.2021.3070437
Barnes, B.B., Hu, C., Cannizzaro, J.P., Craig, S.E., Hallock, P., Jones, D.L., Lehrter, J.C., Melo, N., Schaeffer, B.A., Zepp, R., 2014. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements. Remote Sens. Environ. 140, 519–532. https://doi.org/10.1016/j.rse.2013.09.024
Bernardo, N., Watanabe, F., Rodrigues, T., Alcântara, E., 2016. An investigation into the effectiveness of relative and absolute atmospheric correction for retrieval the TSM concentration in inland waters. Model. Earth Syst. Environ. 2. https://doi.org/10.1007/s40808-016-0176-9
Bhateria, R., Jain, D., 2016. Water quality assessment of lake water: a review. Sustain. Water Resour. Manag. 2, 161–173. https://doi.org/10.1007/s40899-015-0014-7
Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic ( case 1 ) waters : Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31,033-31,044.
Brunt, K.M., 2014. Remote Sensing I : Basics.
Buckton, D., O’Mongain, E., Danaher, S., 1999. The use of Neural Networks for the estimation of oceanic constituents based on the MERIS instrument. Int. J. Remote Sens. 20, 1841–1851. https://doi.org/10.1080/014311699212515
Buma, W.G., Lee, S. Il, 2020. Evaluation of Sentinel-2 and Landsat 8 images for estimating Chlorophyll-a concentrations in Lake Chad, Africa. Remote Sens. 12. https://doi.org/10.3390/RS12152437
Canty, M.J., Nielsen, A.A., 2008. Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-weighted MAD Transformation. Remote Sens. Environ. 112, 1025–1036.
Canty, M.J., Nielsen, A.A., 2004. Automatic Radiometric Normalization of Multitemporal Satellite Imagery. Remote Sens. Environ. 91, 441–451.
Carder, K.L., Chen, F.R., Lee, Z.P., Hawes, S.K., Kamykowski, D., 1999. Semianalytic Moderate-Resolution Imaging Spectrometer algorithm for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures. J. Geophys. Res. 104, 5403–5421.
Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22, 361–369. https://doi.org/10.4319/lo.1977.22.2.0361
Carreck, R., 1982. The Family Encyclopedia of Natural History.
Chen, J., Zhang, X., Quan, W., 2013. Retrieval chlorophyll-a concentration from coastal waters: three-band semi-analytical algorithms comparison and development. Opt. Express 21, 9024. https://doi.org/10.1364/oe.21.009024
Cieśliński, R., Piekarz, J., 2014. Outflows of groundwater in lakes: case study of Lake Raduńske Górne. Limnol. Rev. 14, 169–179. https://doi.org/10.1515/limre-2015-0007
Cristina, S., Fragoso, B., Icely, J., Grant, J., 2018. Remote Sensing for Marine Spatial Planning and Aquaculture. Aquasp. Proj. Doc.
Dall’Olmo, G., Gitelson, A.A., 2006. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results. Appl. Opt. 45, 3577. https://doi.org/10.1364/ao.45.003577
Davis, G., 2007. History of the NOAA Satellite Program. J. Appl. Remote Sens. 1, 1–18.
Deirmendjian, L., Lambert, T., Morana, C., 2020. Dissolved organic matter composition and reactivity in Lake Victoria, the World’s largest tropical lake. Biogeochemistry. https://doi.org/10.1007/s10533-020-00687-2
Denaro, L.G., Yi Lin, B., Syariz, M.A., Jaelani, L.M., Hung Lin, C., 2018. Pseudo-Invariant Feature Selection for Crosssensor Optical Satellite Images. J. Remote Sens. GIS 07. https://doi.org/10.4172/2469-4134.1000239
Dowman, I., Jacobsen, K., Konecny, G., Sandau, R., 2012. High Resolution Optical Satellite Imagery.
Du, S.S., Wang, Y., Zhai, X., Balakrishnan, S., Salakhutdinov, R., Singh, A., 2018. How Many Samples are Needed to Estimate a Convolutional Neural Network? https://doi.org/arXiv:1805.07883v2
Du, Y., Teillet, P.M., Cihlar, J., 2002. Radiometric Normalization of Multitemporal High-resolution Satellite Images with Quality Control for Land Cover Change Detection. Remote Sens. Environ. 82, 123–134.
Dumont, H.J., 1998. The Caspian Lake: History, biota, structure, and function. Limnol. Oceanogr. 43, 44–52. https://doi.org/10.4319/lo.1998.43.1.0044
Ebaugh, W.C., Macfarlane, W., 1910. Comparative analyses of water from great salt lake. Ind. Eng. Chem. 2, 454. https://doi.org/10.1021/ie50023a005
European Space Agency, 2021. Copernicus Sentinel-3 OLCI Land User Handbook.
Food and Agriculture Organization of the United Nations, 1972. Inland Fisheries Development in West Irian: Report on Project Results, Conclusions and Recommendations.
Fraser, R.S., Ferrare, R.A., Kaufman, Y.J., Mattoo, S., Fraser, R.S., 1989. Algorithm for Atmospheric Corrections of Aircraft and Satellite Imagery. NASA Tech. Memo. 106 pp.
Garver, S.A., Siegel, D.A., 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargassio Sea. J. Geophys. Res. 102.
Gitelson, A.A., Dall’Olmo, G., Moses, W., Rundquist, D.C., Barrow, T., Fisher, T.R., Gurlin, D., Holz, J., 2008. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 112, 3582–3593. https://doi.org/10.1016/j.rse.2008.04.015
GKSS Research Center, 2010. OLCI Level 2 Algorithm Theoretical Basis Document Ocean Colour Turbid Water. https://doi.org/10.1023/A:1013602207077
González Vilas, L., Spyrakos, E., Torres Palenzuela, J.M., 2011. Neural network estimation of chlorophyll a from MERIS full resolution data for the coastal waters of Galician rias (NW Spain). Remote Sens. Environ. 115, 524–535. https://doi.org/10.1016/j.rse.2010.09.021
Guo, Y., Liu, C., Ye, R., Duan, Q., 2020. Advances on water quality detection by uv-vis spectroscopy. Appl. Sci. 10, 1–18. https://doi.org/10.3390/app10196874
Gurlin, D., Gitelson, A.A., Moses, W.J., 2011. Remote estimation of chl-a concentration in turbid productive waters - Return to a simple two-band NIR-red model? Remote Sens. Environ. 115, 3479–3490. https://doi.org/10.1016/j.rse.2011.08.011
Ha, N.T.T., Koike, K., Nhuan, M.T., 2013. Improved accuracy of chlorophyll-a concentration estimates from MODIS Imagery using a two-band ratio algorithm and geostatistics: As applied to the monitoring of eutrophication processes over Tien Yen Bay (Northern Vietnam). Remote Sens. 6, 421–442. https://doi.org/10.3390/rs6010421
Ha, N.T.T., Koike, K., Nhuan, M.T., Canh, B.D., Thao, N.T.P., Parsons, M., 2017. Landsat 8/OLI Two bands ratio algorithm for chlorophyll-a concentration mapping in hypertrophic waters: An application to west lake in Hanoi (Vietnam). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 4919–4929. https://doi.org/10.1109/JSTARS.2017.2739184
Hafeez, S., Wong, M., Ho, H., Nazeer, M., Nichol, J., Abbas, S., Tang, D., Lee, K., Pun, L., 2019. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sens. 11, 617. https://doi.org/10.3390/rs11060617
Hajigholizadeh, M., 2016. Water Quality Modelling Using Multivariate Statistical Analysis and Remote Sensing in South. Florida International University. https://doi.org/10.25148/etd.FIDC001230
Hall, F.. G., Strebel, D.F., Nickeson, J.E., Goetz, S.J., 1991. Radiometric Rectification : Toward a Common Radiometric Response Among Multidate, Multisensor Images. Remote Sens. Environ. 35, 11–27.
Hammer, U.T., 1986. Saline Lake Ecosystems of the World.
Herrera, E., Nadaoka, K., Blanco, A.C., Hernandez, E.C., 2015. Hydrodynamic investigation of a shallow lake environment (Laguna Lake, Philippines) and associated implications for eutrophic vulnerability. ASEAN Eng. J. Part C 4, 48–62.
Hoagland, A.P., Anderson, D.M., Kaoru, Y., White, A.W., Hoaglandl, P., 2012. The Economic Effects of Harmful Algal Blooms in the United Needs States : Estimates , Assessment Issues , and Information. Assessment 25, 819–837.
Hubel, B.Y.D.H., Wiesel, A.D.T.N., 1962. Functional Architecture in the Cat ’ S Visual Cortex. J. Physiol. 160, 106–154. https://doi.org/10.1523/JNEUROSCI.1991-09.2009
Igamberdiev, R.M., Grenzdoerffer, G., Bill, R., Schubert, H., Bachmann, M., Lennartz, B., 2011. Determination of chlorophyll content of small water bodies (kettle holes) using hyperspectral airborne data. Int. J. Appl. Earth Obs. Geoinf. 13, 912–921. https://doi.org/10.1016/j.jag.2011.04.001
Ioannou, I., Gilerson, A., Gross, B., Moshary, F., Ahmed, S., 2013. Deriving ocean color products using neural networks. Remote Sens. Environ. 134, 78–91. https://doi.org/10.1016/j.rse.2013.02.015
Ioannou, I., Gilerson, A., Gross, B., Moshary, F., Ahmed, S., 2011. Neural network approach to retrieve the inherent optical properties of the ocean from observations of MODIS. Appl. Opt. 50, 3168. https://doi.org/10.1364/ao.50.003168
Ipsos Business Consultant, 2010. Indonesia’s Aquaculture - Key Sectors for Future Growth.
Jain, S.K., Agarwal, P.K., Singh, V.P., 2007. Hydrology and Water Resources of India, Water science and technology library: 57.
Jianya, G., Haigang, S., Guorui, M., Qiming, Z., 2008. A Review of Multi-temporal Remote Sensing Data Change Detection. Remote Sens. Spat. Inf. Sci. 37, 757–762.
Kaufman, Y.J., 1987. Atmospheric Effect on Spectral Siganture - Measurements. Adv. Sp. Res. 7, 203–206.
Kementerian Lingkungan Hidup, 2011. Profil 15 Danau Prioritas Indonesia.
Kingma, D.P., Ba, J., 2015. Adam: A Method for Stochastic Optimization, in: ICLR. pp. 1–15.
Kira, T., Ide, S., Fukada, F., Nakamura, M., 2006. Lake Biwa Experience and Lessons Learned Brief.
Kohl, S.A.A., Romera-Paredes, B., Meyer, C., De Fauw, J., Ledsam, J.R., Maier-Hein, K.H., Ali Eslami, S.M., Rezende, D.J., Ronneberger, O., 2018. A probabilistic U-net for segmentation of ambiguous images, in: Advances in Neural Information Processing Systems.
Kown, Y.S., Baek, S.H., Lim, Y.K., Pyo, J.C., Ligaray, M., Park, Y., Cho, K.H., 2018. Monitoring coastal chlorophyll-a concentrations in coastal areas using machine learning models. Water (Switzerland) 10, 1–17. https://doi.org/10.3390/w10081020
Kyryliuk, D., Kratzer, S., 2019. Evaluation of sentinel-3A OLCI products derived using the case-2 regional coastcolour processor over the Baltic Sea. Sensors (Switzerland) 19.
Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L., 2016. Machine learning in geosciences and remote sensing. Geosci. Front. 7, 3–10. https://doi.org/10.1016/j.gsf.2015.07.003
Lee, Z.P., Carder, K.L., Chen, F.R., Kamykowski, D., Hawes, S.K., 2002. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures . J. Geophys. Res. Ocean. 104, 5403–5421. https://doi.org/10.1029/1998jc900082
Li, J., Gao, M., Feng, L., Zhao, H., Shen, Q., Zhang, F., Wang, S., Zhang, B., 2019. Estimation of Chlorophyll-a Concentrations in a Highly Turbid Eutrophic Lake Using a Classification-Based MODIS Land-Band Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12, 3769–3783. https://doi.org/10.1109/JSTARS.2019.2936403
Light, D.L., 1990. Characteristics of Remote Sensors for Mapping and Earth Science Applications 56, 1613–1623.
Lin, C., Lin, B., Lee, K., Chen, Y., 2015. Radiometric Normalization and Cloud Detection of Optical Satellite Images using Invariant Pixels. ISPRS J. Photogramm. Remote Sens. 106, 107–117. https://doi.org/10.1016/j.isprsjprs.2015.05.003
Liu, T., Fang, S., Zhao, Y., Wang, P., Zhang, J., 2015. Implementation of Training Convolutional Neural Networks. https://doi.org/10.1561/2000000039
Lu, Z., Mingsheng, L., Yan, W., Lijun, L.U., Yong, W., 2004. Robust Approach to the MAD Change Detection Method. Proc. SPIE 5574, 184–193.
Menon, H.B., Adhikari, A., 2018. Remote Sensing of Chlorophyll-A in Case II Waters: A Novel Approach With Improved Accuracy Over Widely Implemented Turbid Water Indices. J. Geophys. Res. Ocean. 123, 8138–8158. https://doi.org/10.1029/2018JC014052
Mishra, S., Mishra, D.R., 2012. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 117, 394–406. https://doi.org/10.1016/j.rse.2011.10.016
Morel, A., Maritorena, S., 2001. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Ocean. 106, 7163–7180. https://doi.org/10.1029/2000JC000319
Moses, W.J., Gitelson, A.A., Berdnikov, S., Povazhnyy, V., 2009. Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS - The azov sea case study. IEEE Geosci. Remote Sens. Lett. 6, 845–849. https://doi.org/10.1109/LGRS.2009.2026657
Moutzouris-Sidiris, I., Topouzelis, K., 2021. Assessment of Chlorophyll-a concentration from Sentinel-3 satellite images at the Mediterranean Sea using CMEMS open source in situ data. Open Geosci. 13, 85–97. https://doi.org/10.1515/geo-2020-0204
Nguyen, M. Van, Lin, C., Syariz, M.A., Thu, T., Le, H., Blanco, A.C., 2021. Multi-task Convolution Neural Network for Season-insensitive Chlorophyll-a Estimation in Inland Water. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. PP, 1. https://doi.org/10.1109/JSTARS.2021.3118693
Nielsen, A.A., Conradsen, K., Simpson, J.J., 1998. Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies. Remote Sens. Environ. 64, 1–19.
Niroumand-jadidi, M., Bovolo, F., Bruzzone, L., 2019. Novel Spectra-Derived Features for Empirical Retrieval of Water Quality Parameters : Demonstrations for OLI , MSI ,. IEEE Trans. Geosci. Remote Sens. 57, 10285–10300.
Niroumand-Jadidi, M., Vitti, A., Lyzenga, D.R., 2018. Multiple Optimal Depth Predictors Analysis (MODPA) for river bathymetry: Findings from spectroradiometry, simulations, and satellite imagery. Remote Sens. Environ. 218, 132–147. https://doi.org/10.1016/j.rse.2018.09.022
Oinonen, M., Pesonen, P., Alenius, T., Heyd, V., Holmqvist-Saukkonen, E., Kivimäki, S., Nygrén, T., Sundell, T., Onkamo, P., 2014. Event reconstruction through Bayesian chronology: Massive mid-Holocene lake-burst triggered large-scale ecological and cultural change. Holocene 24, 1419–1427. https://doi.org/10.1177/0959683614544049
Pahlevan, N., Lee, Z., Wei, J., Schaaf, C.B., Schott, J.R., Berk, A., 2014. On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens. Environ. 154, 272–284. https://doi.org/10.1016/j.rse.2014.08.001
Paolini, L., Grings, F., Sobrino, J.A., Muñoz, J.C.J., Karszenbaum, H., Paolini, L., Grings, F., Sobrino, J.A., Jiménez, J.C., 2006. Radiometric Correction Effects in Landsat Multi-date / Multi‐sensor Change Detection Studies. Int. J. Remote Sens. 27, 685–704.
Patterson, J., Gibson, A., 2017. Deep Learning: A Practitioner’s Approach. O’Reilly Media.
Pyo, J.C., Duan, H., Baek, S., Kim, M.S., Jeon, T., Kwon, Y.S., Lee, H., Cho, K.H., 2019. A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery. Remote Sens. Environ. 233, 111350. https://doi.org/10.1016/j.rse.2019.111350
Rustamov, R.B., Salahova, S.E., Zeynalova, M.H., Hasanova, S.N., 2012. Earth Observation – Space Technology.
Saguin, K., 2014. Biographies of fish for the city: Urban metabolism of Laguna Lake aquaculture. Geoforum 54, 28–38. https://doi.org/10.1016/j.geoforum.2014.03.008
Samli, R., Sivri, N., Sevgen, S., Kiremitci, V.Z., 2014. Applying artificial neural networks for the estimation of chlorophyll-a concentrations along the Istanbul coast. Polish J. Environ. Stud. 23, 1281–1287. https://doi.org/10.1109/MDT.1987.295112
Schott, J.R., Salvaggio, C., Volchok, W.J., 1988. Radiometric Scene Normalization Using Pseudoinvariant Features. Remote Sens. Environ. 16, 1–16.
Shi, K., Zhang, Y., Zhou, Y., Liu, X., Zhu, G., Qin, B., Gao, G., 2017. Long-Term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Sci. Rep. 7, 1–16. https://doi.org/10.1038/srep40326
Shumwey, S.E., 1990. A Review of the Effects of Algal Blooms on Shellfish and Aquaculture. J. World Aquac. Soc. 21, 65–104.
Smith, B., Pahlevan, N., Schalles, J., Ruberg, S., Errera, R., Ma, R., Giardino, C., Bresciani, M., Barbosa, C., Moore, T., Fernandez, V., Alikas, K., Kangro, K., 2021. A Chlorophyll-a Algorithm for Landsat-8 Based on Mixture Density Networks. Front. Remote Sens. 1, 1–17. https://doi.org/10.3389/frsen.2020.623678
Syariz, M.A., Lin, B.Y., Denaro, L.G., Jaelani, L.M., Van Nguyen, M., Lin, C.H., 2019. Spectral-consistent relative radiometric normalization for multitemporal Landsat 8 imagery. ISPRS J. Photogramm. Remote Sens. 147, 56–64. https://doi.org/10.1016/j.isprsjprs.2018.11.007
Tamayo-Zafaralla, M., Santos, R.A.V., Orozco, R.P., Elegado, G.C.P., 2002. The ecological status of Lake Laguna de Bay, Philippines. Aquat. Ecosyst. Heal. Manag. 5, 127–138. https://doi.org/10.1080/14634980290031820
Tao, M., Duan, H., Cao, Z., Loiselle, S.A., Ma, R., 2017. A Hybrid EOF Algorithm to Improve MODIS Cyanobacteria Phycocyanin Data Quality in a Highly Turbid Lake: Bloom and Nonbloom Condition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 4430–4444. https://doi.org/10.1109/JSTARS.2017.2723079
Tsagkatakis, G., Aidini, A., Fotiadou, K., Giannopoulos, M., Pentari, A., Tsakalides, P., 2019. Survey of Deep-Learning Approaches for Remote Sensing Observation Enhancement. Sensors 19, 3929. https://doi.org/10.3390/s19183929
Van Nguyen, M., Lin, C.H., Chu, H.J., Jaelani, L.M., Syariz, M.A., 2020. Spectral feature selection optimization for water quality estimation. Int. J. Environ. Res. Public Health 17. https://doi.org/10.3390/ijerph17010272
Wang, D., Ma, R., Xue, K., Loiselle, S.A., 2019. The assessment of landsat-8 OLI atmospheric correction algorithms for inland waters. Remote Sens. 11. https://doi.org/10.3390/rs11020169
Wang, Q., Wang, S., 2021. A predictive model of chlorophyll a in western lake erie based on artificial neural network. Appl. Sci. 11. https://doi.org/10.3390/app11146529
Wang, X., Zhang, F., Ding, J., 2017. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed. Sci. Rep. 1–18. https://doi.org/10.1038/s41598-017-12853-y
Witter, D.L., Ortiz, J.D., Palm, S., Heath, R.T., Budd, J.W., 2009. Assessing the application of SeaWiFS ocean color algorithms to Lake Erie. J. Great Lakes Res. 35, 361–370. https://doi.org/10.1016/j.jglr.2009.03.002
World Bank, 2013. FISH TO 2030 Prospects for Fisheries and Aquaculture.
Wurster, F., 2006. Management recommendations for reservoir releases from upper snow lake: leavenworth national fish hatchery.
Yang, X., Lo, C.P., 2000. Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images. Photogramm. Eng. Remote Sensing 66, 967–980.
Yu, B., Xu, L., Peng, J., Hu, Z., 2021. Global chlorophyll-a concentration estimation from moderate resolution imaging spectroradiometer using convolutional neural networks 14. https://doi.org/10.1117/1.JRS.14.034520
Zhang, L., Wu, C., Du, B., 2014. Automatic Radiometric Normalization for Multitemporal Remote Sensing Imagery With Iterative Slow Feature Analysis. IEEE Trans. Geosci. Remote Sens. 52, 6141–6155.