簡易檢索 / 詳目顯示

研究生: 吳東晉
Wu, Tung-Chin
論文名稱: 順滑模態觀測器與控制系統設計
Sliding Mode Observer and Control System Design
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 99
中文關鍵詞: 順滑模態觀測器非匹配式外擾適應性控制
外文關鍵詞: sliding mode observer, mismatched uncertainty, adaptive control
相關次數: 點閱:135下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於許多優異的特性,順滑模態控制理論在強健控制領域中已引起廣泛注意,其發展在近幾十年間日趨成熟。其特有的優異性能是建立於理想順滑模態發生的條件下,亦即當系統狀態近入順滑模態時,系統對於外擾或不確定性具有高度強健性。也因此,順滑模態也被廣泛地應用於系統狀態觀測器之設計,順滑模態觀測器仍保有順滑模態的良好特性,系統在順滑模態中將不受匹配式外擾或系統不確定性之影響。本文提出一強健順滑模態觀測器架構,並應用於混沌系統之同步化問題,對於不同系統之條件,皆具有良好的精度,並可針對系統參數進行調校。然而在傳統設計方法中,對於非匹配式外擾及系統不變零點皆有所限制條件,雖然此舉可使設計過程更為簡單明瞭,但會大幅降低其可行性及應用面,在實際應用中,非匹配式外擾將會影響其估測精度甚至使系統不穩定,因此,本文也將針對具有非匹配式外擾之系統進行分析,並考慮不穩定的不變零點所帶來之影響,透過用性矩陣不等式方法進行參數最佳化,使系統在穩定條件下達到最佳估測效能。最後,將應用此觀測器於機械系統控制之設計。

    Due to its distinct feature and robustness heritage, the sliding mode control theory receives wide attention in control system research and applications. Its distinct properties achieved by discontinuous switching control action are established when the ideal sliding motion takes place. The concept of sliding mode control has extended to the problem of state estimation known as the sliding mode observer, which possesses the merits of sliding mode dynamics. When system attains to the sliding surface, the system dynamics are totally independent of the matched uncertainties or disturbances called the invariance property. This dissertation synthesizes a sliding mode observer scheme, and it applies to a 4D chaotic system under different conditions. This shows that the observer has satisfactory performance and can updates the system parameters under specific assumptions. In addition, the systems with unstable invariant zeros and mismatched uncertainties are considered. It reveals that the mismatched uncertainties will degrade the estimation accuracy, and even result in system instability. The proposed sliding mode observer guarantees the stability, and maintains the superior performance with the observer gains optimized by the LMIs technique. The robust observer is also applied to the control of a mechanical system to demonstrate the feasibility and advantages of the proposed design scheme.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV LIST OF FIGURES VII LIST OF TABLES IX CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Review 1 1.3 Structure of the Dissertation 5 CHAPTER 2 SLIDING MODE CONTROL THEORY 6 2.1 Problem Statement 6 2.2 Properties of Sliding Mode Control 7 2.2.1 Filippov Theorem 7 2.2.2 Matching Condition 9 2.2.3 Invariant Zeros 11 2.2.4 Sliding Mode Controller Design 12 2.2.5 Equivalent Control and Equivalent System 13 2.2.6 Regular Form via Coordinate Transformation 16 2.3 A Numerical Study for Stabilization of MCK Systems 21 CHAPTER 3 SLIDING MODE OBSERVERS 26 3.1 Sliding Mode Observers for Linear Uncertain Systems 26 3.2 Sliding Mode Observers for Nonlinear Uncertain Systems 30 3.3 Sliding Mode Observers for Fault Detection 34 3.3.1 Reconstruction of the Input Fault Signals 35 3.3.2 Detection of Faults at the Output 36 CHAPTER 4 SYNCHRONIZATION OF CHAOTIC SYSTEMS BASED ON SLIDING MODE OBSERVER 38 4.1 A 4-dimension Chaotic System 38 4.2 Synchronization of the Nominal System with State Feedback 40 4.3 Synchronization of the Nominal System with Output Feedback 42 4.4 Synchronization of the Uncertain System with Output Feedback 46 4.5 A Simulation for Synchronization of Uncertain Systems 50 4.6 Discussions 53 CHAPTER 5 SLIDING MODE OBSERVER DESIGN FOR SYSTEMS SUBJECT TO MISMATCHED UNCERTAINTIES 55 5.1 Problem Formulation 55 5.2 Sliding Mode Observer Design via LMIs Technique 57 5.3 Stability Analysis 61 5.4 Numerical Studies 66 5.4.1 Example 1 67 5.4.2 Example 2 71 5.5 Discussions 75 CHAPTER 6 APPLICATION TO OBSERVER-BASED CONTROL OF MECHANICAL SYSTEMS 77 6.1 Regulation of a Single Link Robot 77 6.2 Backstepping Design Based on State Feedback 78 6.3 Design of Observer-Based Controller 82 CHAPTER 7 CONCLUSIONS 89 REFERENCES 91 PUBLICATION LIST 98 VITA 99

    Azemi, A., and Yaz, E.E., “Sliding-mode Adaptive Observer Approach to Chaotic Synchronization,” Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, Vol. 122, No. 4, pp. 758-765 (2000).
    Banerjee, S., Saha, P., and Chowdhury, A.R., “Chaotic Scenario in the Stenflo Equations,” Physica Scripta, Vol. 63, No. 3, pp. 177-180 (2001).
    Bejarano, F.J., and Fridman, L., “High Order Sliding Mode Observer for Linear Systems with Unbounded Unknown Inputs,” International Journal of Control, Vol. 83, No. 9, pp. 1920-1929 (2010).
    Besnard, L.B., Shtessel, Y.B., and Landrum, B., “Quadrotor Vehicle Control via Sliding Mode Controller Driven by Sliding Mode Disturbance Observer,” Journal of the Franklin Institute, Vol. 349, No. 2, pp. 658-684 (2012).
    Boutat-Baddas, L., Barbot, J.P., and Boutat, D., “Sliding Mode Observers and Observability Singularity in Chaotic Synchronization,” Mathematical Problems in Engineering, No. 1, pp. 11-31 (2004).
    Bowong, S., and Tewa, J.J., “Practical Adaptive Synchronization of a Class of Uncertain Chaotic Systems,” Nonlinear Dynamics, Vol. 56, No. 1-2, pp. 57-68 (2009).
    Boyd, S., Guaoui, L.E., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia (1994).
    Cao, W.J., and Xu, J.X. “Nonlinear Integral-Type Sliding Surface for Both Matched and Unmatched Uncertain Systems,” IEEE Transactions on Automatic Control, Vol. 49, No. 8, pp. 1355-1360 (2004).
    Chalhoub, N.G., and Kfoury, G.A., “Development of a Robust Nonlinear Observer for a Single-link Flexible Manipulator,” Nonlinear Dynamics, Vol. 39, No. 3, pp. 217-233 (2005).
    Chang, J.L., “Dynamic Output Feedback Sliding Mode Control for Uncertain Mechanical Systems without Velocity Measurements,” ISA Transactions, Vol. 49, No. 2, pp. 229-234 (2010).
    Chang, J.L., “Dynamic Output Feedback Integral Sliding Mode Control Design for Uncertain Systems,” International Journal of Robust and Nonlinear Control, Vol. 22, No. 8, pp. 841-857 (2012).
    Chang, Y., and Cheng, C.C., “Adaptive Sliding Mode Control for Plants with Mismatched Perturbations to Achieve Asymptotical Stability,” International Journal of Robust and Nonlinear Control, Vol. 17, No. 9, pp. 880-896 (2007).
    Cheng, C.C., “Design of MIMO Integral Variable Structure Controllers,” Journal of the Franklin Institute, Vol. 336, No. 7, pp. 1119-1134 (1999).
    Chen, C.C., and Liu I.M., “Design of MIMO Integral Variable Structure Controllers,” Journal of the Franklin Institute, Vol. 336, No. 7, pp. 1119-1134 (1999).
    Cheng, C.C., Lin, Y.S., and Wu, S.W., “Design of Adaptive Sliding Mode Tracking Controllers for Chaotic Synchronization and Application to Secure Communications,” Journal of the Franklin Institute, Vol. 349, No. 8, pp. 2626-2649 (2012).
    Chen, M.Y., and Min, W. “Unknown Input Observer Based Chaotic Secure Communication,” Physics Letters A, Vol. 372, No. 10, pp. 1595-1600 (2008).
    Chilali, M., and Gahinet, P., “H∞ Design with Pole Placement Constraints: An LMI Approach,” IEEE Transactions of Automatic Control, Vol. 41, No. 3, pp. 358-367 (1996).
    Chilali, M., Gahinet, P., and Apkarian, P., “Robust Pole Placement in LMI Regions,” IEEE Transactions on Automatic Control, Vol. 44, No. 12, pp. 2257-2269 (1999).
    Choi, H.H., “A New Method for Variable Structure Control System Design: A Linear Matri Inequality Approach,” Automatica, Vol. 33, No. 11, pp. 2089-2092 (1997).
    Choi, H.H., “An Explicit Formula of Linear Sliding Surfaces for a Class of Uncertain Dynamics Systems with Mismatched Uncertainties,” Automatica, Vol. 34, No. 8, pp. 1015-1020 (1998).
    Choi, H.H. “On the Existence of Linear Sliding Surfaces for a Class of Uncertain Dynamic System with Mismatched Uncertainties,” Automatica, Vol. 35, No. 10, pp. 1707-1715 (1999).
    Choi, H.H. “An LMI-based Switching Surface Design Method for a Class of Mismatched Uncertain Systems,” IEEE Transactions of Automatic Control, Vol.48, No. 9, pp. 1634-1638 (2003).
    Choi, H.H. “Variable Structure Control of Dynamical System with Mismatched Norm-bounded Uncertainties: An LMI Approach,” Automatica, Vol. 35, No. 10, pp. 1707-1715 (2003).
    Edwards, C., and Spurgeon, S.K., “On the Development of Discontinuous Observers,” International Journal of Control, Vol. 59, No. 5, pp. 1211-1229 (1994).
    Edwards, C., and Spurgeon, S.K., Sliding Mode Control: Theory and Applications, Taylor & Francis, Padstow (1998).
    Edwards, C., “A Practical Method for the Design of Sliding Mode Controllers Using Linear Matrix Inequalities,” Automatica, Vol. 40, No. 10, pp.1761-1769 (2004).
    Emelyanov, S.V., Variable Structure Control System, Nauka, Moscow (1967).
    Feki, M., “Observer-based Exact Synchronization of Ideal and Mismatched Chaotic Systems,” Physics Letters A, Vol. 309, No. 1-2, pp. 53-60 (2003).
    Ferrara, A., and Utkin, V. I., “Sliding Mode Optimization in Dynamic LTI Systems,” Journal of Optimization Theory and Applications, Vol. 115, No. 3, pp. 727-740 (2002).
    Gao, Z.F., Jiag, B., Shi, P., and Qian, M.S., “Active Fault Tolerant Control Design for Reusable Launch Vehicle Using Adaptive Sliding Mode Technique,” Journal of Frnaklin Institute, Vol. 349, No. 4, pp.1543-1560 (2012).
    Hasler, M., and Maistrenko, Y.L., “An Introduction to the Synchronization of Chaotic Systems: Couple Skew Tent Maps,” IEEE Transaction on Circuits and Systems I-Fundamental Theory and Applications, Vol. 44, No. 10, pp. 856-866 (1997).
    Hu, Q.L., and Xiao, B., “Adaptive Fault Tolerant Control Using Integral Sliding Mode Strategy with Application to Flexible Spacecraft,” International Journal of Systems Science, Vol. 44, No. 12, pp. 2273-2286 (2013).
    Itkis, Y., “Dynamic Switching of Type-I Type-II Structures in Tracking Servosystems,” IEEE Transactions On Automatic Control, Vol. 28, No. 4, pp. 531-534 (1983).
    Khalil, H.K., Nonlinear Systems, Prentice Hall, New Jersey (2002).
    Kim, C.M., Rim, S., and Kye, W.H., “Sequential Synchronization of Chaotic Systems with an Application to Communications,” Physical Review Letters, Vol. 88, No. 1, pp. 014103 (2002).
    Koshkouei, A.J. and Zinober, A.S.I., “Sliding Mode State Observation for Non-linear Systems,” International Journal of Control, Vol. 77, No. 2, pp. 118-127 (2004).
    Kwan, C.M., “Sliding Mode Control of Linear Systems with Mismatched Uncertainties Observation for Non-linear Systems,” Automatica, Vol. 31, No. 2, pp. 303-307 (1995).
    Leung, H., and Zhu, Z.W., “Time-varying Synchronization of Chaotic Systems in the Presence of System Mismatch,” Physical Review E, Vol. 69, No. 2, pp. 1-5 (2004).
    Li, L.X., Peng, H.P., Wang, X.D., and Yang, Y.X., “Comment on Two Papers of Chaotic Synchronization,” Physics Letters A, Vol.333, No.3-4, pp. 269-270 (2004).
    Li, L.X., Yang, Y.X., and Peng, H.P., “Comment on Adaptive Q-S Time-varying Synchronization and Parameters Identification of Uncertain Delayed Neural Networks,” Chaos, Vol. 7, No. 3, (2007).
    Lin, J.S., Yan, J.J., and Liao, T.L., “Chaotic Synchronization via Adaptive Sliding Mode Observers Subject to Input Nonlinearity,” Chaos Solitons Fractals, Vol. 2, No. 1, pp. 371-381 (2005).
    Lim, W., and Kim, S.Y., “Effect of Parameter Mismatch on Partial Synchronization in Coupled Chaotic Systems,” Journal of Korean Physical Socirty, Vol. 48, pp. S146-S151 (2006).
    Parlitz, U., “Estimating Model Parameters from Time Series by Autosynchronization,” Physical Review Letters, Vol. 76, No. 8, pp. 1232-1235 (1996).
    Pecora, L.M. and Carroll, T.L., “Synchronization in Chaotic Systems,” Physical Review Letters, Vol. 64, No. 8, pp. 821-824 (1990).
    Raoufi, R., and Zinober, A.S.I., “Smooth Adaptive Sliding Mode Observers in Uncertain Chaotic Communication,” International Journal of Systems Science, Vol. 38, No. 11, pp. 931-942 (2007).
    Slotine, J.J.E., Hedrick, J.K., and Misawa, E.A., “On Sliding Observers for Nonlinear-systems,” Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, Vol. 109, No. 3, pp. 245-252 (1987).
    Stenflo, L., “Generalized Lorenz equations for Acousitc-gravity Waves in the Atmosphere,” Physica Scripta, Vol. 53, No. 1, pp. 83-83 (1996).
    Sun, F., Peng, H.P., Luo, Q., Li, L.X., and Yang, Y.X., “Parameter Identification and Projective Synchronization between Different Chaotic Systems,” Chaos, Vol. 19, No. 2, pp. 023109 (2009).
    Tan, C.P., and Edwards, C., “An LMI Approach for Designing Sliding Mode Observers,” International Journal of Control, Vol. 74, No. 16, pp. 1559-1568 (2001).
    Tan, C.P., and Edwards, C., “Sliding Mode Observers for Robust Detection and Reconstruction of Actuator and Sensor Faults,” International Journal of Control, Vol. 13, No. 5, pp. 443-463 (2003).
    Tan, C.P., and Edwards, C., “Robust Fault Reconstruction in Uncertain Linear Systems Using Multiple Sliding Mode Observer in Cascade,” IEEE Transactions on Automatic Control, Vol. 55, No. 4, pp. 855-867 (2010).
    Utkin, V.I., “Variable Structure Systems with Sliding Modes,” IEEE Transactions on Automatic Control. Control, Vol. 22, No. 2, pp. 212-222 (1977).
    Utkin, V.I., Yang, K.D., “Methods of Constructing Discontinuity Planes in Multidimensional Variable Structure Systems,” Automatic Remote Control, Vol. 39, No. 10, pp. 1466-1470 (1987).
    Utkin, V.I., Sliding Modes in Control and Optimization, Springer-Verlag, Berlin (1992).
    Veluvolu, K.C., and Lee, D., “Sliding Mode High-gain Observers for a Class of Uncertain Nonlinear Systems,” Applied Mathematics Letters, Vol. 24, No. 3, pp. 329-334 (2011).
    Wang, G.B., and Peng, S.S., “A Sliding Observer for Nonlinear Process Control,” Chemical Engineering Science, Vol. 52, No. 5, pp. 787-805 (1997).
    Wang, S.M., Luo, H., Yue, C., and Liao, X., “Parameter Identification of Chaos System Based on Unknown Parameter observer,” Physics Letters A, Vol. 372, No. 15, pp. 2603-2607 (2008).
    Walcott, B.L., and Zak, S.H., “State Observation of Nonlinear Uncertain Dynamic Systems,” IEEE Transactions on Automatic Control, Vol. 32, No. 2, pp. 166-170 (1987).
    Xiang, W., and Chen, F.Q., “An Adaptive Sliding Mode Control Scheme for a Class of Chaotic Systems with Mismatched Perturbations and Input Nonlinearities,” Communications in Nonlinear Science and Numerical Simulation, Vol. 16, No. 1, pp. 1-9 (2011).
    Yu, D.C., and Wu, A.G., “Comment on Estimating Model Parameters from Time Series by Autosynchronization,” Physical Review Letters, Vol. 94, No. 21 (2005).
    Yu, W.W., Chen, G., Cao, J., Lu, J., and Parlitz, U., l., “Parameter Identification of Dynamical Systems from Time Series,” Physical Review E, Vol. 75, No. 6 (2007).
    Zhang, J., Swain, A.K., and Nguang, S.K., “Robust Sensor Fault Estimation Shceme for Satellite Attitude Control Systems,” Journal of the Franklin Institute, Vol. 350, No. 9, pp. 2581-2604 (2013).
    Zhu, F.L., and Yang, J.Q., “Fault Detection and Isolation Design for Uncertain Nonlinear Systems Based on Full-order, Reduced-order and High-order High-gain Sliding-mode Observers,” International Journal of Control, Vol. 86, No. 10, pp. 1800-1812 (2013).
    Zohdy, M., Fadali, M.S. and Liu, J., “Variable Structure Control Using System Decomposition,” IEEE Transactions on Automatic Control, Vol. 37, No. 10, pp. 1514-1517 (1992).

    無法下載圖示 校內:2016-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE