簡易檢索 / 詳目顯示

研究生: 陳炫博
Chen, Hsuan-Po
論文名稱: 旋鍛製程對2024擠形鋁管微觀組織與拉伸機械性質之影響
Effects of Rotary Swaging on Microstructure and Tensile Mechanical Properties of 2024 Aluminum Extruded Tube
指導教授: 呂傳盛
Lui, Truan-Sheng
洪飛義
Hung, Fei-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 2024鋁合金旋鍛製程熱處理機械性質
外文關鍵詞: 2024 Al alloy, rotary swaging, heat treatment, mechanical properties
相關次數: 點閱:142下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   旋鍛製程 (Rotary Swaging, RS)是一種常應用於管材與棒材縮徑的加工方式,有平整性佳、進料速度快、可於常溫加工且成本低等優點。本研究第一部分為探討經旋鍛後之2024鋁管後續彎管的加工性,並比較退火熱處理與固溶熱處理對加工成形性之影響。第二部分為成形後熱處理與旋鍛效應探討,其目的為了解旋鍛製程對材料機械性質與微觀組織之影響。
      第一部分實驗結果顯示旋鍛有細化晶粒效果且其導入之應變能使熱處理後之材料組織有晶粒成長現象。拉伸性質上顯示固溶熱處理與旋鍛加工能提升材料加工硬化率、加工硬化指數與均勻延伸率效果,適合做為加工成形之熱處理與縮徑加工方式。
      第二部分人工時效熱處理之固溶效應方面,顯示旋鍛加工使基地內晶出相細化而達到固溶量提升效果,且材料內部差排密度、晶界密度提高與晶格缺陷的存在使人工時效析出效果優化,進而獲得較高降伏強度,相關成果對於工業上結構材應用有實質助益。

    Rotary swaging is a process for precision forming of tubes or bars. 2024 tube aluminum alloy was used in this study. To investigate the applicability of rotary swaging on 2024 tube aluminum alloy, there are two objective in this study. First, to understand the formability of rotary swaged 2024 tube aluminum alloy, full annealing (O) and solution treatment (T4) were conducted. Second, we expect to attain high yield strength (YS) after forming, so the effects of rotary swaging and T6 treatment are discussed.
    In the first part, results showed that the uniform elongation (UE) and strain hardening exponent (n) can be improved by T4 and rotary swaging. From the formability of view, T4 on rotary swaged 2024 tube aluminum alloy is more proper than O before plastic process.
    In the second part, rotary swaging improved amount of solutes during solution treatment and the effects of artificial aging by increasing dislocation densities and grain boundaries which can accelerate diffusion of solute atoms and be nucleation sites for inhomogeneous nucleation of precipitation. Therefore, higher YS was achieved.

    總目錄 摘要 I 誌謝 IX 總目錄 X 表目錄 XIII 圖目錄 XIV 第一章 前言 1 第二章 文獻回顧 2 2-1 2xxx系列Al-Cu系鋁合金介紹 2 2-1-2 2024鋁合金特性 3 2-2 熱處理效應 4 2-2-1 完全退火與固溶熱處理 4 2-2-2 T6熱處理 5 2-3 旋鍛製程介紹 6 2-3-1 旋鍛設備與流程 6 2-3-2 旋鍛製程材料特性 7 2-4 研究目的 8 第三章 實驗步驟與方法 11 3-1 材料準備 11 3-1-1 2024鋁合金擠形管材 11 3-1-2 熱處理條件 12 3-2 顯微組織特性調查 13 3-2-1 組織演變分析 13 3-2-2 相解析 14 3-2-3 織構分析 14 3-3 機械性質探討 15 3-3-1 微觀硬度分布解析 15 3-3-2 拉伸試片製備及拉伸性質測試 15 3-3-3 破斷面及次表面觀察 16 第四章 實驗結果與討論 24 4-1 加工成形性探討 24 4-1-1 微觀組織特性分析 24 4-1-2 晶出相組成與分率調查 24 4-1-3 自然時效行為調查 26 4-1-4 拉伸性質分析 26 4-1-5 拉伸破斷特徵與機制探討 27 4-2 成形後機械性質探討 30 4-2-1 微觀組織特性分析 30 4-2-2 晶出相組成與分率調查 30 4-2-3 拉伸性質與硬度分析 32 4-2-4 拉伸破斷特徵與機制探討 35 第五章 結論 75 參考文獻 77

    1. M. A. Abdulstaar, E. A. El-Danaf, N. S. Waluyo, L. Wagner, Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties. Materials Science and Engineering, 2013. 565: pp. 351-358.
    2. E. Rauschnabel, V. Schmidt, Modern applications of radial forging and swaging in the automotive industry. Materials Processing Tenchnology, 1992: pp. 371-383.
    3. 王祝堂,願景誠,曾蘇民,鋁合金及其加工手冊 (第二版),14頁。
    4. 賴耿陽譯著,『鑄造技術用書5-非鐵合金鑄物』,復華出版社,1997,115-116頁。
    5. J.E. Hatch, "Aluminum: properties and physical metallurgy", American Society for Metals, 1984: pp. 397-400
    6. 王祝堂,願景誠,曾蘇民,鋁合金及其加工手冊 (第二版), 192-193頁。
    7. D. A. P. Reis1, A. A. Couto, N. I. Domingues , A. C. O. Hirschmann, S. Zepka, C. M. Neto, Effect of Artificial Aging on the Mechanical Properties of an Aerospace Aluminum Alloy 2024. Defect and Diffusion Forum, 2012. 326-328: pp. 193-198.
    8. Yi, H. K. , J. H. Lee, Y. S. Lee, and Y. H. Moon, Warm Hydroformability and Mechanical Properties of Pre-and Post-Heat Treated Al6061 Tubes. in Advanced Materials Research, 2007.
    9. B. Zhang, and T. Baker, Effect of the heat treatment on the hot deformation behaviour of AA6082 alloy. Journal of materials processing technology, 2004. 153: pp. 881-885.
    10. 張家源,熱處理製程對6069鋁合金微觀組織與拉伸機械性質之影響,國立成功大學材料科學及工程學系,碩士論文,民國105 年。
    11. 唐自勇,A7050與A2024鋁合金異質銲接與銲後熱處理之研究,國立交通大學機械工程學系,碩士論文,民國100年。
    12. D. Rippel, E. Moumi, M. Lütjen, B. Scholz-Reiter, and B. Kuhfuß2, Application of Stochastic Regression for the Configuration of Microrotary Swaging Processes. Mathematical Problems in Engineering, 2014: pp. 1-12.
    13. S. J. Lima, H. J. Choia, C. H. Leeb, Forming characteristics of tubular product through the rotary swaging process. Journal of Materials Processing Technology, 2009: pp. 283-288.
    14. M. Abdulstaar, M. Mhaede, L. Wagner, M. Wollmann, Corrosion behaviour of Al 1050 severely deformed by rotary swaging. Materials & Design, 2014: pp. 325-329.
    15. W. M. Gan, Y. D. Huang, R. Wang, Z. Y. Zhong, N. Hort, K.U. Kainer, N. Schell, H. G. Brokmeier, A. Schreyer, Bulk and local textures of pure magnesium processed by rotary swaging. Journal of Magnesium and Alloys, 2013: pp. 341-345.
    16. M. Abdulstaar, M. Mhaede, M. Wollmann, L. Wagner, Investigating the effects of bulk and surface severe plastic deformation on the fatigue, corrosion behaviour and corrosion fatigue of AA5083. Surface and Coatings Technology, 2014: pp. 244-251.
    17. 林修群,固溶化處理對旋鍛4384鋁合金微觀組織與拉伸性質之影響,國立成功大學材料科學及工程學系,碩士論文,民國104年。
    18. 羅文男,T4T6熱處理與旋鍛製程對7075擠形鋁合金顯微組織與機械性質之影響,國立成功大學材料科學及工程學系,碩士論文,民國105年。
    19. 黎寓庭,退火與固溶化處理對7001鋁合金管材的微觀組織與拉伸性質之影響,國立成功大學材料科學及工程學系,碩士論文, 民國104年。
    20. J. Koziel, L. Błaż, G. Włoch, J. Sobota, P. Lobry, Precipitation Processes during Non-Isothermal Ageing of Fine-Grained 2024 Alloy. Archives of Metallurgy and Materials, 2016: pp. 169-176
    21. 林春億,摩擦攪拌製程及後續加熱對Al-5Mg-0.6Mn 合金微觀組織與常溫拉伸性質之影響,國立成功大學材料科學及工程學系,博士論文,民國103 年。
    22. 陳思達,純鋁及鋁銅合金拉伸性質之摩擦攪拌效應及Hollomon 方程式適用性檢討,國立成功大學材料科學及工程學系,博士論文,民國100年7月。
    23. A. Deschamps, M. Niewczas, F. Bley, Y. Brechet, J. D. Embury, L. LeSinq, F. Livet, and J. P. Simon, Low-temperature dynamic precipitation in a supersaturated Al-Zn-Mg alloy and related strain hardening. PHILOSOPHICAL MAGAZINE, 1999: pp. 2485-2504.
    24. 林佳緯,新型應力誘發熔融激化製程下Al-Mg-Si合金之微觀組織演變、機械性質以及沖蝕磨耗特性研究,國立成功大學材料科學及工程學系,博士論文,民國105年6月。
    25. N. Durlu, N. K. Çalişkan, and Ş. Bor, Effect of swaging on microstructure and tensile properties of W–Ni–Fe alloys. International Journal of Refractory Metals and Hard Materials, 2014: pp. 126-131.
    26. M. H. Goodarzy, H. Arabi, M. A. Boutorabi, S. H. Seyedein, S. H. Hasani Najafabadi, The effects of room temperature ECAP and subsequent aging on mechanical properties of 2024 Al alloy. Journal of Alloys and Compounds, 2014: pp. 753-759.
    27. M. Mirzaei, M. R. Roshann, S. A. Jenabali Jahromi, Microstructure and mechanical properties relation in cold rolled Al 2024 alloy determined by X-ray line profile analysis. Materials Science and Engineering: A, 2015: pp. 44-49.

    無法下載圖示 校內:2022-07-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE