| 研究生: |
劉家銘 Liu, Chia-ming |
|---|---|
| 論文名稱: |
單層石墨在外加空間調制電場下的電子性質 Electronic Properties of Graphene Under the Influence of Modulated Electric Fields |
| 指導教授: |
林明發
Lin, Min-fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 態密度 、能帶結構 、緊束模型 、單層石墨 |
| 外文關鍵詞: | DOS, tight-binding model, graphene |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中利用了緊束模型來研究單層石墨在外加空間調制電場下的電子性質,如能帶結構及態密度。外加調制電場分別沿著armchair及zigzag方向:當外加調制電場於armchair方向時,在Fermi energy附近的能帶簡併會被破壞,且於Fermi energy上而產生新的states。能帶結構上則出現許多saddle points。1(gamma-0)附近的能帶簡併亦遭到破壞,態密度上原本在1(gamma-0)處的對數發散峰則形成一帶有震盪結構的”高原”分布。在3(gamma-0)附近的能帶因外加電場而破壞簡併並分布於3+/-V0 (gamma-0)。態密度從原本在3(gamma-0)處的shoulder結構變成由3-V0開始下降,在3+V0處降至零;當外加電場於zigzag方向時,能帶及態密度的變化均類似armchair的情況,大致呈現isotropic的性質。
The tight-binding model is utilized to study the electronic properties of graphene under the influence of modulated electric fields. Most sub-bands that are affected by the modulated electric fields appear to be plat or dispersionless along the direction in which the electric fields are exerted except for some near the Fermi energy. The DOS at the Fermi level is proportional to V0, but not related to the wavelength of the electric fields when RE > 250. New band-edge states are generated in the following regions: ( 0 ~ V0 ) , ( 1 – V0 ~ 1 + V0 ) and ( 3 – V0 ~ 3 + V0). The corresponding peaks in DOS become more obvious with the increase of V0, but less evident when the wavelength is enlarged. The DOS seems to be isotropic with respect to the direction of the modulated electric fields.
[1] R. Satio, G. Dresselhaus, and M.S. Dresselhaus, “Physical properties of carbon nanotubes”, Imperical College Press, London (1998)
[2] K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrest. Electronic and magnetic properties of nanographite ribbons. Phys Rev B 59 12 8271(1999)
[3] B. T. Kelly. Physics of graphite. Applied Science: London, Englewood, N.J., 1981.
[4] J. W. McClure, “Diamagnetism of graphite”, phys. Rev. 104, 666-671 (1956)
[5] J. C. Charlier and J. P. Michenaud, “Tight-binding model for the electronic properties of simple hexagonal graphite”, Phys. Rev. B 44, 13237-13249 (1991)
[6] J. C. Charlier, J. P. Michenaud, and Ph. Lambin, “Tight-bindng density of electronic states of pregraphitic carbon”, Phys. Rev. B 46, 4540-4543 (1992)
[7] P. R. Wallace, “The band theory of graphite”, Phys. Rev. 71, 622-634 (1947)
[8] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, A. P. Douvalis, and I. S . Sanders, “Ferromagnetism of a graphite nodule from the Canyon Diablo meteorite”, Nature 420, 156-159 (2002)
[9] P. Laitenberger and R. E. Palmer, “Plasmon dispersion and damping at the surface of a semimetal”, Phys. Rev. Lett. 76, 1952-1955 (1996)
[10]T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley,“Localized and delocalized electronic states in single-wall carbon nanotubes”, Phys. Rev. Lett. 80, 4729-4732 (1998)
[11]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306, 666-669 (2004)
[12]F. Guinea, A. H. Castro Neto and N. M. R. Peres, “Electronic states and Landau levels in graphene stacks”, Phys. Rev. B 73, 245426 (2006)
[13]J. H. Ho, C. P. Chang and M. F. Lin, “Electronic excitations of the multilayered graphite”, Phys. Lett. A 352, 446-450 (2006)
[14]M. L. Sadowski, G. Martinez, M. Potemski, C. Berger and W. A. de Heer,“Landau level spectroscopy of ultrathin graphite layers”, Phys. Rev. Lett 97, 266405 (2006)
[15]F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, Phys. Rev. B 67, 045405 (2003).