| 研究生: |
黃信翔 Huang, Hsin-Siang |
|---|---|
| 論文名稱: |
P型三氧化二鉻-鋁蕭特基二極體研究 Study of P-type Chromium(III) Oxide-Aluminum Schottky Diodes |
| 指導教授: |
賴韋志
Lai, Wei-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | P型氧化物半導體 、三氧化二鉻 、薄膜電晶體 、蕭特基二極體 |
| 外文關鍵詞: | p-type oxide semiconductor, chromium(III) oxide (Cr₂O₃), thin-film transistor (TFT), Schottky diode |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以溶膠凝膠法(sol–gel method)製備三氧化二鉻(Cr₂O₃)薄膜,並探討其於後段製程(Back End of Line, BEOL)薄膜電晶體(TFT)應用前之材料電性與界面特性。由於三氧化二鉻具有化學穩定性高、寬能隙、且理論上可作為P型氧化物半導體的特性,因此被視為具潛力的氧化物半導體。然而,其實際導電機制與缺陷行為尚未釐清,限制了其元件應用發展。
在實驗中,三氧化二鉻薄膜以溶膠凝膠法沉積於c軸藍寶石基板上,並藉由控制退火溫度調變其電洞濃度。金屬電極則以電子束蒸鍍(E-gun evaporation)製作。霍爾量測結果顯示,三氧化二鉻薄膜呈現P型導電特性,且載子濃度可隨退火條件有效控制。透過變溫電阻量測分析其導電機制,結果符合最鄰近躍遷(Nearest Neighbor Hopping, NNH)模式,所得活化能與室溫熱能相近,顯示載子於室溫下主要以熱激發方式在局域態間遷移。
進一步以三氧化二鉻薄膜與鋁電極形成蕭特基二極體進行電性分析。順向偏壓I–V 量測顯示極高的理想因子(n≫1),且重複量測中出現明顯電流衰減,推測為鋁與三氧化二鉻界面生成氧化層(Al₂O₃)所致。該氧化層會妨礙空乏區形成,導致元件整流特性偏離理想蕭特基行為。另一方面,反向恢復電流測試結果顯示存在大量恢復電荷(Qrr),結合變溫電阻量測結果可推論,三氧化二鉻薄膜中含有高密度局域態與陷阱態,能有效捕獲並釋放載子,影響整體載子傳輸與介面反應。
綜合以上結果,溶膠凝膠法製備之三氧化二鉻薄膜具有導電性與結構穩定性,但其電性明顯受缺陷態與界面氧化層影響。此現象顯示材料內部存在大量局域態與陷阱態,導致其載子傳輸以躍遷為主,並使蕭特基接面偏離理想行為。本研究結果為後續以三氧化二鉻作為BEOL可兼容薄膜電晶體主動層之前置研究提供了重要依據,未來若能進一步控制界面氧化與降低陷阱密度,預期可顯著提升其元件應用潛力。
This study investigates the electrical and defect characteristics of chromium oxide (Cr₂O₃) thin films prepared by a sol–gel process and analyzes their carrier transport behavior in Al/Cr₂O₃/Ni Schottky diodes. Owing to its tunable p-type conductivity and compatibility with low-temperature processing, Cr₂O₃ is a promising material for back-end-of-line (BEOL) electronic applications. The results show that the hole concentration increases with annealing temperature due to enhanced oxygen vacancy formation, which improves film conductivity. Temperature-dependent resistivity measurements reveal that the conduction follows the nearest-neighbor hopping (NNH) mechanism, indicating thermally activated carrier transport among localized states at room temperature. The forward I–V characteristics of the Schottky diodes can be analyzed using thermionic emission theory; however, the ideality factor is significantly larger than unity, suggesting that carrier transport is dominated by interfacial oxide formation and trap-assisted tunneling. Successive measurements show a gradual current decay, indicating interface degradation or trap filling effects. The reverse recovery measurement also exhibits a large recovery charge, implying the presence of deep traps capable of capturing and releasing carriers. These findings demonstrate that carrier transport in sol–gel-derived Cr₂O₃ is strongly influenced by traps and interfacial effects, providing important insights for process optimization and interface engineering in future BEOL-compatible p-type oxide semiconductors.
[1] P. K. Weimer, "The TFT A New Thin-Film Transistor," in Proceedings of the IRE, vol. 50, no. 6, pp. 1462-1469, June 1962, doi: 10.1109/JRPROC.1962.288190
[2] R. A. Street, Hydrogenated amorphous silicon (Cambridge solid state science series). Cambridge ; New York: Cambridge University Press, 1991, pp. xiv, 417 p.
[3] S. D. Brotherton, "Polycrystalline Silicon Thin-Film Transistors," Semicond Sci Tech, vol. 10, no. 6, pp. 721-738, Jun 1995, doi: 10.1088/0268-1242/10/6/001.
[4] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, no. 7016, pp. 488-492, Nov 25 2004, doi: 10.1038/nature03090.
[5] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J Non-Cryst Solids, vol. 352, no. 9-20, pp. 851-858, Jun 15 2006, doi: 10.1016/j.jnoncrysol.2006.01.073.
[6] J. F. Wager, D. A. Keszler, and R. E. Presley, Transparent electronics. New York: Springer, 2008, pp. viii, 212 p.
[7] E. Fortunato, P. Barquinha, and R. Martins, "Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances," Adv Mater, vol. 24, no. 22, pp. 2945-2986, Jun 12 2012, doi: 10.1002/adma.201103228.
[8] Z. P. Ouyang, W. X. Wang, M. J. Dai, B. C. Zhang, J. H. Gong, M. C. Li, L. H. Qin, and H. Sun, "Research Progress of p-Type Oxide Thin-Film Transistors," Materials, vol. 15, no. 14, Jul 2022, doi: 10.3390/ma15144781.
[9] Y. X. Zhang, C. H. Wu, K. M. Chang, Y. M. Chen, N. Xu, and K. C. Tsai, "Effects of P-Type SnOx Thin-Film Transistors with N₂ and O₂ Ambient Furnace Annealing," J Nanosci Nanotechno, vol. 20, no. 7, pp. 4069-4072, Jul 2020, doi: 10.1166/jnn.2020.17554.
[10] M. J. Mattsson, K. M. Niang, J. Parker, D. J. Meeth, J. F. Wager, A. J. Flewitt, and M. W. Graham, "Defect Density of States of Tin Oxide and Copper Oxide p-type Thin-film Transistors," Adv Electron Mater, vol. 11, no. 11, Jul 2025, doi: 10.1002/aelm.202400929.
[11] J. Jang, S. Chung, H. Kang, and V. Subramanian, "P-type CuO and Cu2O transistors derived from a sol–gel copper (II) acetate monohydrate precursor," Thin Solid Films, vol. 600, pp. 157-161, Feb 1 2016, doi: 10.1016/j.tsf.2016.01.036.
[12] Y. Y. Kang, K. Z. Han, A. Kumar, C. K. Wang, C. Sun, Z. P. Zhou, J. R. Zhou, and X. Gong, "Back-End-of-Line Compatible Fully Depleted CMOS Inverters Employing Ge p-FETs and α-InGaZnO n-FETs," IEEE Electr Device L, vol. 42, no. 10, pp. 1488-1491, Oct 2021, doi: 10.1109/Led.2021.3109343.
[13] J. Park, J. Ahn, J. Lee, H. Kim, E. Cho, and J. Kim, "Ultrathin transparent Copper(I) oxide films grown by plasma-enhanced atomic layer deposition for Back-end-of-line p-Type transistors," Applied Physics Letters, vol. 118, no. 14, p. 142104, 2021, doi: 10.1063/5.0047817.
[14] T. S. Tripathi and M. Karppinen, "Atomic Layer Deposition of p-Type Semiconducting Thin Films: a Review," Adv Mater Interfaces, vol. 4, no. 24, Dec 22 2017, doi: 10.1002/admi.201700300.
[15] M. Yang, S. Gao, and Q. Huang, "Facile synthesis of nanocrystalline Cr2O3 thin film," J Wuhan Univ Technol, vol. 26, no. 6, pp. 1032-1035, Dec 2011, doi: 10.1007/s11595-011-0357-3.
[16] T. Asada, K. Nagase, T. Yamada, N. Iwata, and H. Yamamoto, "Fabrication of Magnetoelectric Cr2O3 Films for Application Single Flux Quantum Device," Transactions of the Materials Research Society of Japan, vol. 32, no. 4, pp. 1231-1234, 2007, doi: 10.14723/tmrsj.32.1231.
[17] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, "Charge-transport characteristics in bistable resistive poly (N-vinylcarbazole) films," IEEE Electr Device L, vol. 27, no. 6, pp. 451-453, Jun 2006, doi: 10.1109/Led.2006.874762.
[18] M. Lenzlinger and E. H. Snow, "Fowler-Nordheim Tunneling into Thermally Grown SiO2," J Appl Phys, vol. 40, no. 1, pp. 278-+, 1969, doi: 10.1063/1.1657043.
[19] C. Schleich, D. Waldhör, T. Knobloch, W. F. Zhou, B. Stampfer, J. Michl, M. Waltl, and T. Grasser, "Single-Versus Multi-Step Trap Assisted Tunneling Currents-Part I: Theory," IEEE T Electron Dev, vol. 69, no. 8, pp. 4479-4485, Aug 2022, doi: 10.1109/Ted.2022.3185966.
[20] M. P. Houng, Y. H. Wang, and W. J. Chang, "Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model," J Appl Phys, vol. 86, no. 3, pp. 1488-1491, Aug 1 1999, doi: 10.1063/1.370918.
[21] N. F. Mott and E. A. Davis, Electronic processes in non-crystalline materials, 2d ed. (International series of monographs on physics). Oxford, U.K.: Clarendon Press 1979, pp. xiv, 590 p.
[22] H. Matsuura, A. Takeshita, T. Imamura, K. Takano, K. Okuda, A. Hidaka, S. Ji, K. Eto, K. Kojima, T. Kato, S. Yoshida, and H. Okumura, "Transition of conduction mechanism from band to variable-range hopping conduction due to Al doping in heavily Al-doped 4H-SiC epilayers," Jpn J Appl Phys, vol. 58, no. 9, Sep 1 2019, doi: 10.7567/1347-4065/ab3c2c.
[23] H. Matsuura, Y. Kondo, K. Iida, A. Hidaka, S. Y. Ji, K. Eto, K. Kojima, T. Kato, S. Yoshida, and H. Okumura, "Simple physical model for the sign of the Hall coefficient in variable-range hopping conduction in heavily Al-doped p-type 4H-SiC," Jpn J Appl Phys, vol. 60, no. 3, Mar 1 2021, doi: 10.35848/1347-4065/abe645.
[24] A. Yildiz, N. Serin, T. Serin, and M. Kasap, "Crossover from Nearest-Neighbor Hopping Conduction to Efros-Shklovskii Variable-Range Hopping Conduction in Hydrogenated Amorphous Silicon Films," Jpn J Appl Phys, vol. 48, no. 11, Nov 2009, doi: 10.1143/Jjap.48.111203.
[25] S. M. Sze, Semiconductor devices, physics and technology, 2nd ed. New York: Wiley, 2002, pp. viii, 564 p.
[26] S. Chand and S. Bala, "Simulation studies of current transport in metal-insulator-semiconductor Schottky barrier diodes," Physica B, vol. 390, no. 1-2, pp. 179-184, Mar 1 2007, doi: 10.1016/j.physb.2006.08.011.
[27] H. C. Card and E. H. Rhoderick, "Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes," Journal of Physics D: Applied Physics, vol. 4, no. 10, p. 1589, 1971/10/01 1971, doi: 10.1088/0022-3727/4/10/319.
[28] I. Y. Erdogan and Ö. Güllü, "Silicon MIS diodes with Cr2O3 nanofilm: Optical, morphological/structural and electronic transport properties," Appl Surf Sci, vol. 256, no. 13, pp. 4185-4191, Apr 15 2010, doi: 10.1016/j.apsusc.2010.01.122.
[29] D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2015.
[30] M. M. Abdullah, F. M. Rajab, and S. M. Al-Abbas, "Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties," AIP Advances, vol. 4, no. 2, 2014, doi: 10.1063/1.4867012.
[31] S. N. K. B. V. Reddy, and C. Ashman, "Oscillatory magnetic coupling in Cr2On (n= 1–6) clusters," Physical Review B, vol. 61, no. 8, pp. 5797-5801, 2000.
[32] D. F. Barbe and D. S. Herman, "Transport Processes in Amorphous Cr2O3 Films," J Appl Phys, vol. 41, no. 7, pp. 3116-&, 1970, doi: 10.1063/1.1659372.
[33] C. S. Cheng, H. Gomi, and H. Sakata, "Electrical and optical properties of Cr2O3 films prepared by chemical vapour deposition," Phys Status Solidi A, vol. 155, no. 2, pp. 417-425, Jun 16 1996, doi: 10.1002/pssa.2211550215.
[34] Prathiksha, K. A. Jagadish, and D. Kekuda, "Performance evaluation of p-type Cr2O3 thin films grown by reactive DC magnetron sputtering for Schottky diode applications," Mater Res Express, vol. 11, no. 10, Oct 1 2024, doi: 10.1088/2053-1591/ad8327.
[35] T. Ogino, "Electrical-Properties of Amorphous Si-P/P-Type Si Schottky-Barrier Contact," Jpn J Appl Phys 1, vol. 30, no. 8, pp. 1585-1590, Aug 1991, doi: 10.1143/Jjap.30.1585.
[36] M. C. Schmidt, E. Gutierrez-Partida, M. Stolterfoht, and B. Ehrler, "Impact of Mobile Ions on Transient Capacitance Measurements of Perovskite Solar Cells," PRX Energy, vol. 2, no. 4, p. 043011, 11/13/ 2023, doi: 10.1103/PRXEnergy.2.043011.
[37] P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, "High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment," Applied Physics Letters, vol. 100, no. 20, 2012, doi: 10.1063/1.4718022.