| 研究生: |
鄭凱文 Cheng, Kai-Wen |
|---|---|
| 論文名稱: |
應用於寬頻射頻前端系統的微波元件與三倍頻器及次諧波混頻器之研製 Microwave Components, Tripler and Sub-harmonically Mixer for the Broadband RF Front-end System Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 三倍頻器 、二次諧波混頻器 、半循環器 、巴倫電路 、分佈式放大器 、帶通濾波器 |
| 外文關鍵詞: | tripler, sub-harmonic mixer, dual band quasi-circulator, ultra-wideband active balun, filter, MMIC |
| 相關次數: | 點閱:157 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文首先使用WIN 0.15μm PHEMT製程,實現微小化寬頻帶通濾波器,本次設計主要利用傳統耦合線所製成的帶通濾波器,再並聯電容以進行微小化,並利用其在低頻的高抑制能力去實現寬頻三倍頻器。經過量測後電路的轉換損耗在射頻頻率操作於30~70 GHz為11~26 dB,基頻抑制為11.25~25.54 dB,二次諧波抑制為18~66.67 dB,而P1dB為6 dBm,晶片面積為0.8 × 0.7 mm2。
第二部份延續先前提出的微小化寬頻帶通濾波器使用WIN 0.15μm PHEMT製程,實現寬頻二次諧波混頻器,用以提升LO-to-RF的isolation,並提升其操作頻寬。經過量測後電路的轉換增益在射頻頻率操作於28~72 GHz為5.02~11.5 dB,LO-to-RF的isolation為10.64~27.9 dB,而P1dB為-1 dBm,晶片面積為1.8 × 0.76 mm2。
第三部份使用TSMC CMOS 90 nm製程,實現雙頻帶寬頻半循環器,本次設計主要是利用分佈式放大器拓展其操作頻寬,並藉由兩組不同頻帶藍吉耦合器進行訊號傳輸。經過量測後電路在射頻頻率操作於14~40 GHz傳輸端至天線端的輸入損耗為0.3~3.5 dB,天線端至接收端為0.9 ~ 9 dB,而傳輸端至接收端的isolation為18~22.8 dB,P1dB為-3 dBm,40~67 GHz傳輸端至天線端的輸入損耗為0.3~3.96 dB,天線端至接收端的輸入增益為-0.7~0.8 dB,傳輸端至接收端的isolation為12.9~14.78 dB,P1dB為-3 dBm,晶片面積為0.97 × 0.96 mm2。
第四部份使用TSMC CMOS 90 nm製程,實現超寬頻主動巴倫電路,本次設計承接上章節分佈式放大器的運用,利用其寬頻特性拓展其操作頻寬,並疊接第二組分佈式放大器來達到兩輸出端的差動訊號,經過量測後電路在射頻頻率操作於10~67 GHz,Port 1至Port 2 的輸入增益為-2.58~2.35 dB,Port 1至Port 3的輸入增益為-2.43~2.59 dB,兩埠間振幅差為0.76 dB,相位差為180∘± 10∘,Port 1至Port 2的P1dB為7 dBm,Port 1至Port 3的P1dB為6 dBm,晶片面積為0.83× 0.57 mm2。
A miniature broadband band-pass filter using the WIN 0.15 µm GaAs pHEMT process, consisting of the traditional couple line and shunt capacitor, is proposed. The shunt capacitors are used to reduce couple line length of the proposed band-pass filter. Application to Ka to M band frequency tripler to enhance fundamental suppression is presented. The measured results show that the conversion loss is 11-26 dB, fundamental suppression is 11.25-25.54 dB, second harmonic suppression is 18-66.67 dB, and the P1dB is 6 dBm from RF bandwidth 30 to 70 GHz. The chip size is 0.8 × 0.7 mm2.
The proposed miniature broadband band-pass filter to enhance the LO to RF isolation of the proposed sub-harmonic mixer is also demonstrated. The measured conversion loss is 5.02-11.5 dB, LO to RF isolation is 10.64-27.9 dB, P1dB is -1 dBm from the RF bandwidth 28 to 72 GHz, and the chip size is 1.8 × 0.76 mm2.
To enhance the operating bandwidth, distributed amplifier is used to a proposed quasi-circulator implemented by a TSMC CMOS 90 nm process. Two different Lange couplers are employed to achieve dual-band performance. The measured S21 and S32 are better than -9 dB, the isolation S31 is better than 18 dB, and the P1dB is -3 dBm at RF bandwidth 14 to 40 GHz. While from the RF bandwidth 40 to 67 GHz, S21 and S32 are better than -0.3 dB, the isolation S31 is better than 12.9 dB, and the P1dB is -3 dBm. The chip size is 0.97 × 0.96 mm2.
An ultra-wideband active balun is achieved by cascoding two sets of distributed amplifier implemented by a TSMC CMOS 90 nm process. The measured results indicate that both S21 and S31 are better than -2.58 dB, the amplitude difference between two ports is 0.76 dB, the phase difference between two ports is 180∘±10∘, and P1dB from port 1 to port 2 is 7 dBm, while port 1 to port 3 is 6 dBm from RF bandwidth 10 to 67 GHz and the chip size is 0.83 × 0.57 mm2.
[1-01] B. Razavi,“RF IC design challenges,”Design Automation Conference, 1998.Proceedings, 15-19 June 1988.
[2-01] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[2-02] D. M. Pozar, Microwave and RF design of wireless systems, New York: JohnWiley, 2001.
[2-03] S. A. Mass, Microwave Mixers, 2nd ed. Boston, MA: Artech House.
[2-04] M. T. Faber, J. Chramiec, and M. E. Adamski, Microwave and Millimeter-Wave Diode Frequency Multipliers. Boston, MA: Artech House, 1995.
[2-05] S. A. Maas, Nonlinear Microwave and RF circuits 2nd ed., Artech House, 2003.
[2-06] S. A. Maas, The RF and Microwave Circuit Design Cookbook, Artech House, 1998.
[3-01] Y. S. Lin, H. M. Yang, and C. H. Chen, “Miniature microstrip parallel-coupled bandpass filters based on lumped-distributed coupled-line sections,” in IEEE MTT-S Int. Microwave Symp. Dig. vol. 3, Jun. 2005, pp. 691–694.
[3-02] Y. Campos-Roca, L. Verweyen, M. Fernandez-Barciela, W. Bischof, M. C. Curras-Francos, E. Sanchez, A. Hulsmann, and M. Schlechtweg, “38/76 GHz PHEMT MMIC balance frequency doublers in coplanar technology,” IEEE Microw. Guided Wave Lett., vol. 10, no. 11, pp.484–487, Nov. 2000.
[3-03] H. Fudem and E. C. Niehenke, “Novel millimeter wave active MMIC triplers,” in IEEE MTT-S Int. Dig., vol. 2, Jun. 1998, pp. 387–390.
[3-04] C. Beaulie, “Millimeter wave broad-band frequency tripler in GaAs/InGaP HBT technology,” in IEEE MTT-S Int. Dig., vol. 3,Jun. 2000, pp. 1581–1584.
[3-05] D. Allen, D. Bryant, and W. Gaiewski, “25.5 to 76.5 GHz active frequency tripler for automotive radar applications,” in IEEE MTT-S Int.Dig., vol. 3, Jun. 2003, pp. 2233–2236.
[3-06] G. Y. Chen et al., “A 60–110 GHz low conversion loss tripler in 0.15 μm MHEMT process,” in Asia–Pacific Microw. Conf. Tech. Dig.,Dec. 2009, pp. 377–380.
[3-07] K. Lin, H. Wang, M. Morgan, T. Gaier, and S. Weinreb, “A W-Band GCPW MMIC diode tripler, ” 32nd European Microwave Conference, Milan, Sep. 2002.
[3-08] M. Morgan, and S. Weinreb, “A full waveguide band MMIC tripler for 75-110 GHz,” IEEE International Microwave Symposium Digest, vol. 1, pp. 103–106, Aug. 1975.
[3-09] J. C. Chiu, C. P. Chang, M. P. Houng, and Y. H. Wang, “A 12–36 GHz PHEMT MMIC balanced frequency tripler,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 19–21, Jan. 2006.
[3-10] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A 23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 679–681, Sep. 2007.
[3-11] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 95–97, Feb. 2009.
[3-12] M. Bao and H. Jacobsson, “A 9–31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
[3-13] T. K. Johansen, J. Vidkjær, V. Krozer, and A. Konczykowska, “A high conversion gain Q-band InP DHBT subharmonic mixer using LO frequency doubler,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 916–892, Mar. 2008.
[3-14] B. H. Lee, S. C. Kim, M. K. Lee, and W. S. Sul, “Q-band high conversion gain active sub-harmonic mixer,” Current Appl. Phys, vol. 4, pp. 69–73, Feb. 2004.
[3-15] M. Cohn, J. E. Degenford, and B. A. Newman, “Harmonic mixing with an anti parallel diode pair,” IEEE Trans. Microw. Theory Tech., vol. 23, no. 8, pp. 667–673, Aug. 1975.
[4-01] H. Y. Yang, J. H. Tsai, C. H. Wang, C. S. Lin, W. H. Lin, K. Y. Lin, T. W. Huang, and H. Wang, “Design and analysis of a 0.8-77. 5 GHz ultra-broadband distributed drain mixer using 0.13 μm CMOS technology”, IEEE Trans. Microw. Theory Tech., vo1.57, no. 3, pp. 562–572, Mar. 2009.
[4-02] S. C. Shin, J. Y. Huang, K. Y. Lin, and H. Wang, “A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18 , no. 12, pp. 797–799, Dec. 2008.
[4-03] A. Gasmi, B. Huyart, E. Bergeault, and L. Jallet, “Noise and power optimization of a MMIC quasi-circulator,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1572–1577, Sep. 1997.
[4-04] S. W. Y. Mung and W. S. Chan, “Novel active quasi-circulator with phase compensation technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 800–802, Dec. 2008.
[4-05] H. S. Wu, C. W. Wang, and C.K. Clive Tzuang, “CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at Κ-Band,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2084–2091 Aug. 2010.
[4-06] D. Köther, B. Hopf, T. Sporkmann, I. Wolff, and S. Kosslowski, “New types of MMIC circulators,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, May 1995, pp. 877–880.
[4-07] A. Moussa, Y. Khalaf and A. Khalil, “Design of a novel circulator for wireless transceivers,” International Conference on Microelectronics, pp. 267–270, Dec. 2007.
[4-08] C. E. Saavedra and Y. Zheng, “Active quasi-circulator realization with gain elements and slow-wave couplers,” IET Microw. Antennas Propag., vol. 1, no. 5, pp. 1020–1023, Oct. 2007.
[4-09] S. K. Cheung, T. Halloran, W. Weedon, and C. Caldwell, “MMIC based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 3, pp. 489–497, Mar. 2010.
[4-10] Y. Zheng and C. E. Saavedra, “Active quasi-circulator MMIC using OTAs,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 218–220, Apr. 2009.
[4-11] S. Kumar and H. Morkner, “A high performance 20–42 GHz MMIC frequency multiplier with low input drive power and high output power,” in 36th European Microwave Conference, Manchester, UK, Sep. 2006, pp. 1759–1762.
[4-12] F. van Raay and G. Kompa, “A 2–40 GHz PHEMT MMIC active balun frequency doubler,” in 29th European Microwave Conference, Munich, Germany, Oct. 1999, pp. 349–352.
[4-13] B. J. Huang, B. J. Huang, K. Y. Lin, and H. Wang, “A 2–40 GHz active balun using 0.13 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 164–166, Mar. 2009.
[4-14] C. Viallon, D. Venturin, J. Graffeuil, and T. Parra, “Design of an original K-band active balun with improved broadband balanced behavior,” IEEE T-MTT, vol. 15, pp. 280–282, Apr. 2005.
[4-15] K. Jung, W. R. Eisenstadt, R. M. Fox, A. W. Ogden, and J. Yoon, “Broadband active balun using combined cascode-cascade configuration,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1790–1796, Aug. 2008.
[4-16] T. T. Hsu and C. N. Kuo, “Low power 8-GHz ultra-wideband active balun,” in Silicon Monolith. Integr. Circuits RF Syst. Dig., Jan. 2006, pp. 18–20.
校內:2017-09-04公開