簡易檢索 / 詳目顯示

研究生: 李佳輝
Lee, Chia-Hui
論文名稱: 氮化鎵摻雜錳應用於中間能帶太陽能電池之研究
Investigation of Mn-doped GaN Intermediate Band Solar Cells
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 101
中文關鍵詞: 氮化鎵摻雜錳中間能帶太陽能電池
外文關鍵詞: Mn-doped GaN, intermediate band, solar cell
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對氮化鎵摻雜錳光電特性應用於中間能帶太陽能電池元件之特性探討。首先,我們利用穿透、霍爾量測以及PL 對氮化鎵摻雜錳進行光電特性的分析。而由穿透率量測結果得知,氮化鎵摻雜錳會於禁止能帶內形成中間能帶,因此材料不僅能吸收能量大於氮化鎵能隙的光子,亦會吸收能量大於中間能帶與價(導)電帶間能量差值的光子,便將此特性應用於太陽能電池主動層,以期能貢獻出額外光電流。
    於太陽能電池部分,我們設計了兩種結構,其分別為窗口層為p-AlGaN 以及窗口層為p-GaN 之氮化鎵摻雜錳中間能帶太陽能電池,並比較分析窗口層的不同和主動層氮化鎵摻雜不同錳流量對於中間能帶太陽能電池之影響,預期能藉由中間能帶與價(導)電帶間的吸收而貢獻出額外的光電流,進而提升轉換效率。實驗結果與分析將於本論文中詳加描述。

    In this study we focused on the optical and electrical characteristics of Mn-doped GaN for application in the intermediate band solar cells (IBSCs). In the beginning we investigated Mn-doped GaN by transmittance spectrums, hall measurement and PL. According to the transmittance spectrums, the Mn-doped GaN exhibited that the Mn-related intermediate band was formed in the forbidden band of GaN. Therefore, apart from absorbing the photons with energy more than the band gap energy of GaN, the photons with energy that was higher than the difference between the intermediate band and the conduction (valence) band could also be absorbed. So we used the Mn-doped GaN as the active layer of solar cells, expecting that the intermediate band of Mn-doped GaN could contribute more photocurrent.
    In our work, we fabricated two kinds of Mn-doped GaN intermediate band solar cells. The difference was the window layer. One was p-AlGaN and the other was p-GaN. Then we discussed the influence of the different window layers applied to intermediate band solar cell and expected the intermediate band could enhance the photocurrent. The more details would be discussed in this dissertation .

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 序論 1 1.1 前言 1 1.2 氮化銦鎵太陽能電池簡介 2 1.3 中間能帶太陽能電池簡介 (intermediate band solar cell) 3 1.4 研究動機與論文架構 5 參考文獻 10 第二章 理論背景 13 2.1 太陽能電池簡介 13 2.2 太陽能電池原理 13 2.2.1 太陽能電池接面設計 13 2.2.1.1 p-n接面 13 2.2.1.2 p-i-n接面 14 2.2.1.3中間能帶太陽能電池 (intermediate band solar cell) 15 2.3 太陽能電池等效電路模型 17 2.3.1 理想化等效電路模型 17 2.3.2 非理想等效電路模型 19 2.4 太陽能電池元件相關參數分析 19 2.4.1 開路電壓 (Open-circuit Voltage, VOC) 20 2.4.2 短路電流(Short Current, ISC) 20 2.4.3 最大輸出功率 (Maximum Output Power, PMAX)、最大輸出電壓 (VMAX)、最大輸出電流 (IMAX) 21 2.4.4 填充因子 (Fill Factor, FF) 22 2.4.5 光電轉換效率 (Energy Conversion Efficiency, η) 22 2.4.6 頻譜響應 (Spectral Responsivity, SR(λ)) 23 2.4.7 外部量子效率 (External Quantum Efficiency, EQE) 24 2.4.8 串聯電阻 (series resistance, Rs) 25 2.4.9 串聯電阻與並聯電阻對於太陽能電池之影響 26 2.5 太陽能電池量測環境 27 2.5.1 空氣質量(Air Mass)與輻射照度(irradiance) 27 2.6 氮化鎵摻雜錳理論背景 28 參考文獻 36 第三章 元件結構製程與量測 39 3.1中間能帶太陽能電池之結構與製程 39 3.1.1窗口層為p-AlGaN之中間能帶太陽能電池結構 39 3.1.2窗口層為p-GaN之中間能帶太陽能電池結構 40 3.2中間能帶太陽能電池之製程 41 3.2.1試片清潔 41 3.2.2中間能帶太陽能電池製程步驟 42 3.3量測儀器 48 參考文獻 55 第四章 量測結果與討論 56 4.1氮化鎵摻雜錳之光電特性分析與量測 56 4.1.1氮化鎵摻雜錳之穿透率量測 56 4.1.2氮化鎵摻雜錳之霍爾量測分析 57 4.1.3氮化鎵摻雜錳之常溫光致螢光(PL)分析 58 4.2窗口層為p-AlGaN之氮化鎵摻雜錳中間能帶太陽能電池量測分析與討論 58 4.2.1太陽能電池光電轉換特性分析 59 4.2.2外部量子效率(EQE)量測結果分析 64 4.2.3結果與討論 66 4.3窗口層為p-GaN之氮化鎵摻雜錳中間能帶太陽能電池量測分析與討論 67 4.3.1探討錳擴散對於至p-GaN窗口層之影響 67 4.3.2太陽能電池光電轉換特性分析 68 4.3.3外部量子效率(EQE)量測結果分析 70 4.3.4雙光源外部量子效率量測分析 71 4.3.5電致發光量測分析(EL) 73 4.3.6結果與討論 75 參考文獻 99 第五章 結論與未來展望 100

    第一章
    [1] Fritts C, “New Form of Selenium Cell, with some Remarkable Electrical Discoveries made by its Usef”, Proc. Am. Assoc. Adv. Sci. Vol.33, pp.97 (1883).
    [2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys. Vol.25, pp.676-677 (1954).
    [3] D. C. Reynolds, G. Leies, L. L. Antes, and R. E. Marburger, “Photovoltaic Effect in Cadmium Sulfide”, Phys. Rev. Vol.96, pp.533-534 (1954).
    [4] M. B. Prince, “Silicon Solar Energy Converters”, J. Appl. Phys. Vol.26, pp. 534-540 (1955).
    [5] Joseph J. Loferski, “Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion”, J. Appl. Phys. Vol.27, pp. 777-784 (1956).
    [6] Joseph J. Wysocki and Paul Rappaport, “Effect of Temperature on Photovoltaic Solar Energy Conversion”, J. Appl. Phys. Vol.31, pp.571-578 (1960).
    [7] William Shockley and Hans J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells”, J. Appl. Phys. Vol.32, pp.510–519 (1961).
    [8] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN”, Appl. Phys Lett. Vol.80, pp.3967-3969 (2002)
    [9] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame,and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett. Vol. 60, pp. 2917, (1992).
    [10] Antonio Luque and Antonio Martı´, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. Vol. 78, pp. 26, (1997).
    [11] Luque, A., Cuadra, L. , Marti, A. , “Partial filling of a quantum dot intermediate band for solar cells”, IEEE Electron Device Lett. Vol.48, no.10, pp.2394, (2001).
    [12] Luque, A., Marti, A. and Colin Stanley , “Understanding intermediate-band solar cells”, Nature Photonics 6, pp.146–152, (2012).
    [13] J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil , “Titanium doped silicon layers with very high concentration”, J. Appl. Phys. Vol. 104, pp.016105, (2008).
    [14] K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, “Multiband GaNAsP quaternary alloys”, Appl. Phys. Lett. Vol. 88, pp. 092110, (2006).
    [15] Wang, W., Lin, A. S. and Phillips, J. D. , “Intermediate-band photovoltaic solar cell based on ZnTe:O ”, Appl. Phys. Lett. Vol. 95, pp. 011103, (2009).
    [16] N. Lo´pez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Phys. Rev. Lett. Vol. 106, pp. 028701, (2011).
    [17] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. Vol. 80, pp. 1731, (2002).
    [18] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett. Vol. 91, pp. 242502, (2007).

    第二章
    [1] A. Luque and S. Hegedus,“Handbook of Photovoltaic Science and Engineering,”Wiley, England, 2002.
    [2] J. Nelson,“The Physics of Solar Cell,”Imperial College Press, Lodon, 2003.
    [3] 江孟庭, “探討串聯電阻對於氮化銦鎵系列太陽能電池之影響”, 國立成功大學光電科學與工程研究所, 碩士論文, (2011).
    [4] 黃泯舜, “提升氮化銦鎵太陽能電池轉換效率之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2010).
    [5] Donald A. Neamen, “Semiconductor Physics & Devices”, Third Edition, Mc Graw Hill, 2003.
    [6] Antonio Luque and Antonio Martı´, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. Vol. 78, pp. 26, (1997).
    [7] Antonio Luque and Antonio Martı´, “ The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept ”, Adv. Mater. Vol. 22, pp.160–174, (2010)
    [8] Luque, A., Cuadra, L. , Marti, A. , “Partial filling of a quantum dot intermediate band for solar cells”, IEEE Electron Device Lett. Vol.48, no.10, pp.2394, (2001).
    [9] Marti A., Tablero C., Antolin E., Luque A., Campion R.P., Novikov S.V., Foxon C.T., “Potential of Mn doped In1−xGaxN for implementing intermediate band solar cells ”, Solar Energy Materials and Solar Cells, Vol93, pp.641-644, (2009).
    [10] Yu, K. M. et al. , “ Multiband GaNAsP quaternary alloys ”, Appl. Phys. Lett. Vol.88, pp.092110 (2006).
    [11] Wang, W., Lin, A. S. and Phillips, J. D. , “Intermediate-band photovoltaic solar cell based on ZnTe:O ”, Appl. Phys. Lett. Vol. 95, pp.

    011103, (2009).
    [12] N. Lo´pez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Phys. Rev. Lett. Vol. 106, pp. 028701, (2011).
    [13] 紀國鐘, 蘇炎坤, 光電半導體技術手冊, 台萬電子材料與元件協會出版, 2002.
    [14] 黃惠良, 曾百亨, 太陽電池, 五南圖書出版, 2008.
    [15] Dieter K. Schroder, “Semiconductor materials and device character”, A Wiley-Interscience Publication, chap. 4, pp. 195, (1998).
    [16] 劉宇軒, “錳摻雜於氮化鎵系列材料之光電特性研究與元件應用”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
    [17] P. Boguslawski and J. Bernholc, “ Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N”, Phys. Rev. B vol. 72, 115208, (2005).
    [18] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett. vol. 91, pp. 242502, (2007).
    [19] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. vol. 80, pp. 1731, (2002).
    [20] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett. vol. 81, p. 5159, (2002).
    [21] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B vol. 308, pp. 30, (2001).
    [22] F. E. Arkun, A. M. Mahros, N. A. El-Masry, J. Muth, X. Zhang, J. M. Zavada, and S. M. Bedair, Materials Research Society Symposia Proceedings vol. 955 (Materials Research Society, Pittsburgh, 2006), p.0955-I07-02.

    第三章
    [1] A. Luque and S. Hegedus,“Handbook of Photovoltaic Science and Engineering,”Wiley, England, 2002.
    [2] “Standard Test Method for Electrical Performance of PhotovoltaicCells Using Reference Cells Under Simulated Sunlight, ” American Society for Testing and Materials Committee, E948-95.

    第四章
    [1] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett. vol. 91, pp. 242502, (2007).
    [2] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett. vol. 81, p. 5159, (2002).

    無法下載圖示 校內:2017-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE