| 研究生: |
陳玉凡 Fan, Yu |
|---|---|
| 論文名稱: |
脂肪族與芳香族聚酯類高分子的球晶成長機制和特殊球晶型態
之關聯性 Correlations between growth regimes and unusual spherulite morphology in aliphatic versus aryl polyesters |
| 指導教授: |
吳逸謨
Woo, E. M. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 球晶型態 、球晶成長機制 |
| 外文關鍵詞: | spherulite morphology, growth regime |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Poly(octamethylene terephthalate) (POT)和poly(nonamethylene terephthalate) (PNT)為新合成的芳香族聚酯類高分子,二者的物理特性藉由偏光顯微鏡、微分掃描熱卡計、廣角X光繞射分析儀及掃描式電子顯微鏡分析其結晶型態及結晶動力和機制。為了進一步分析球晶的成長機制隨著不同溫度的影響,分別有成核和分子的擴散兩種因素互相抗衡,將球晶成長速率代入Lauritzen-Hoffman理論公式,則可以得到兩區段斜率不同的變化,由低溫到高溫分別為Regime-III和Regime-II。在較低溫的Regime-III因為溫度低,為分子擴散速率控制;而溫度比較高的Regime-II則為成核速率控制,分子鏈的運動反而因溫度的升高而變得容易。對照各結晶溫度下的球晶型態和計算得到的各成長區間(regimes),發現球晶型態不只會受溫度影響,對於成核或分子擴散速率的快慢也有關係。將不同結晶溫度下所得到型態不同的結晶,以X光繞射分析發現為同一種晶型,顯示球晶型態的差異並非晶型的不同所造成。POT和PNT在特定的溫度範圍內會有環狀消光環(ring)的球晶產生。值得一提的是,POT在高溫結晶時,於加入偏光板和沒有偏光板的情況下所觀察到的環狀消光環有明顯的出入。PNT在所有觀察的溫度範圍皆有兩種不同型態的球晶,分別稱為type I及type II球晶,type I相對於type II球晶來講為佔大多數的比率,兩種球晶皆會隨著溫度有不同變化情形。
脂肪族聚酯類高分子Poly(ε-caprolactone) (PCL)和相容的非結晶性高分子已不同比例混摻,觀察各不同的高分子對於PCL結晶的影響。加入非結晶性高分子會造成PCL球晶有很大的改變,同一溫度下的球晶成長速率也因不定型高分子所佔比例的增加而明顯下降。此外,也利用Lauritzen-Hoffman公式觀察成長區間和球晶型態之間的關聯性。
Poly(octamethylene terephthalate) (POT) and poly(nonamethylene terephthalate) (PNT) with respectively eight and night methylene units between two terephthalates which were newly synthesized polyesters were under discussion about the crystal structures, growth kinetics, and spherulite morphology in this thesis. The crystalline morphology and polymorphism of polyesters were examined by means of polarized-optical microscopy (POM). The process of spherulite growth was photoed by Nikon charge-coupled-device CCD digital camera and the rates were measured from records using automatic image processing software. To analyze the regime behavior of spherulite growth, Lauritzen-Hoffman theory was introduced to fit the growth rate data, and resulted in two regimes with the increase of temperature. The change of morphologies not only depends on crystallization temperatures, but also relates to the growth regime behavior. It was also discovered that although the spherulites may be growing totally different, the crystal forms examined by wide-angle x-ray diffraction (WAXD) were the same. What deserved to be mentioned is that the ringed-spherulites of POT, which is unique under polarized or non-polarized optical microscopy. The band width of the ringed-spherulite under non-polarized optical microscopy is twice as that under polarized optical microscopy. To further probe into the ring pattern, scanning electron microscopy (SEM) was used. It was confirmed that the band width observed by SEM was corresponding to that observed by POM. There is the same situation about the band width of the second type of spherulites (the one that is more sparse than the other) of PNT.
Difference in spherulite ring-band patterns between neat poly(-caprolactone) (PCL) and miscible blends was probed to correlate with growth regimes. Spherulite growth in thin-film forms and transformation of spherulite patterns in different regimes were investigated by comparing neat PCL with its miscible blends. Blending of PCL with miscible amorphous polymers changes the spherulite patterns significantly. Effect of different diluent polymers varies. For neat PCL, in transition from regime III to regime II, the spherulites are patterned in ring-less to ring-banded types, respectively, in different regimes. Maltese-cross spherulites and dendritic spherulites (with highly irregular ring bands and no Maltese-cross) are featured in different growth regimes (low- and high-temperature regimes, respectively) for neat PCL.
[1] Norton, D. R.; Keller, A. Polymer 1985, 26, 704.
[2] Keith, H. D.; Padden, F. J., Jr. Polymer 1984, 25, 28.
[3] Lovinger, A. J.; Keith, H. D. Macromolecules 1996,
29, 8541.
[4] Keith, H. D.; Padden, F. J., Jr. Macromolecules 1996,
29, 7776.
[5] Keller, A. J Polym Sci Part B: Polym Phys 1955, 17,
291.
[6] Wang, J.; Lin, C. Y.; Hanzlicek, J.; Cheng, S. Z. D.;
Geil, P. H.; Grebowicz, J.; Ho, R. M. Polymer 2001,
42, 7171.
[7] Hu, Y. S.; Liu, R. Y. F.; Zhang, L. Q.; Rogunova, M.;
Schiraldi, D. A.; Nazarenko, S.; Hiltner, A.; Baer,
E. Macromolecules 2002, 35, 7326.
[8] Ho, R. M.; Ke, K. Z.; Chen, M. Macromolecules 2000,
33, 7529.
[9] Wang, Z.; An, L.; Jiang, W.; Jiang, B.; Wang, X. J
Polym Sci Part B: Polym Phys 1999, 37, 2682.
[10] Keith, H. D. Macromolecules 1982, 15, 114.
[11] Keith, H. D. Macromolecules 1982, 15, 122.
[12] Keith, H. D.; Padden, F. J., Jr; Russell, T. P.
Macromolecules 1989, 22, 666.
[13] Lotz, B.; Thierry, A. Macromolecules 2003, 36, 286.
[14] Ludwig, H. J.; Eyerer, P. Polym Eng Sci 1988, 28,
143.
[15] Jakeways, R.; Ward, I. M.; Wilding, M. A.; Hall, I.
H.; Desborough, I. J.; Pass, M. G. J Polym Sci Polym
Phys Ed 1975, 13, 799.
[16] Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro,
H.; Tanaka, T.; Yado, K. Macromolecules 1976, 9, 266.
[17] Chuah, H. Macromolecules 2001, 34, 6985.
[18] Wu, P. L.; Woo, E. M. J Polym Sci Part B: Polym Phys
2003, 41, 80.
[19] Wu, P. L.; Woo, E. M. J Polym Sci Part B: Polym Phys
2002, 40, 1571.
[20] Hall, I. H.; Pass, M. G.; Rammo, N. N. J Polym Sci
Polym Phys Ed 1978, 16,
1409.
[21] Hall, I. H.; Rammo, N. N. J Polym Sci Polym Phys Ed
1978, 16, 2189.
[22] Stein, R. S.; Misra, A. J Polym Sci Polym Phys Ed
1980, 18, 327.
[23] Yeh, J. Y.; Runt, J. J Polym Sci Part B: Polym Phys
1989, 27, 1543.
[24] Wu, P. L.; Woo, E. M. J Polym Sci Part B: Polym Phys
2004, 42, 1265.
[25] Woo, E. M.; Wu, P. L.; Chiang, C. P.; Liu, H. L.
Macromol. Rapid Commun. 2004, 25, 942.
[26] Yan, K. C.; Woo, E. M. Colloid Polym. Sci. 2007
revised.
[27] Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I. In
Treatise on Solid State Chemistry, Hannay, N. B.,
Ed.; Plenum Press: New York 1976 Vol. 3.
[28] Flory, P. J.; Vrij, A. J. Am. Chem. Soc. 1963, 85,
3548.
[29] Hoffman, J. D.; Weeks, J. J. J. Res. Natl. Bur.
Stand. (US) 1962, A66, 13.
[30] Hoffman, J. D.; Miller, R. L. Polymer 1997, 38, 3135.
[31] Hoffman, J. D.; Miller, R. L. Macromolecules 1988,
21, 3038.
[32] Avrami, M. J. Chem. Phys. 1949, 9, 177.
[33] Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I. In
Treatise on Solid State Chemistry; Hannay, N. B.,
Ed.; Plenum: New York, 1976, Vol. 3, Chapter 7.
[34] Hoffman, J. D.; Weeks, J. J. J Res Natl Bur Stand
Sect A 1962, 66, 113.
[35] Xu, J.; Srinivas, S.; Marand, H.; Agarwal, P.
Macromolecules 1998, 31, 8230.
[36] Marand, H.; Xu, J.; Srinivas, S. Macromolecules
1998, 31, 8219.
[37] Hong, P. D.; Chung, W. T.; Hsu, C. F. Polymer 2002,
43, 3335.
[38] Keith, H. D.; Padden, F. J., Jr. Polymer 1984, 25,
28.
[39] Lovinger, A. J.; Keith, H. D. Macromolecules 1996,
29, 8541.
[40] Keith, H. D.; Padden, F. J., Jr. Macromolecules
1996, 29, 7776.
[41] Keller, A. J Polym Sci 1955, 17, 291.
[42] Wang, J.; Lin, C. Y.; Hanzlicek, J.; Cheng, S. Z.
D.; Geil, P. H.; Grebowicz, J.; Ho, R. M. Polymer
2001, 42, 7171.
[43] Hu, Y. S.; Liu, R. Y. F.; Zhang, L. Q.; Rogunova,
M.; Schiraldi, D. A.; Nazarenko, S.; Hiltner, A.;
Baer, E. Macromolecules 2002, 35, 7326.
[44] Ho, R. M.; Ke, K. Z.; Chen, M. Macromolecules 2000,
33, 7529.
[45] Wu, P. L.; Woo, E. M. J Polym Sci Part B: Polym Phys
2003, 41, 80.
[46] Zhai, X.; Wang, W.; Zhang, G. L. and He, B. L.
Macromolecular 2006 39, 324-329.
[47] Lovinger, A. J. J. Polym. Sci. Polym. Phys. Ed. 1980
18, 793.
[48] Lotz, B. and Cheng, S. Z. D. Polymer 2005 46, 577-610
[49] Chen, M.; Chen, C. C.; Ke, K. Z. and Ho, R. M.
J.Macrom. Sci.-Phys. 2002 41B, 1063-1078.
[50] Chen, Y. F. MS thesis. 2007 National Cheng Kung
University, Tainan, Taiwan.
[51] Kressler, J; Svoboda, P; Inoue, T. Polymer 1993, 24,
3225.
[52] Chen, H. L.; Li, L. J.; Ou-Yang, W. C.; Hwang, J.
C.; Wong, W. Y. Macromolecules 1997, 30, 1718.
[53] Wang, T. T; Nishi, T. Macromolecules 1977, 10, 421.
[54] Maclaine, J. Q. and Booth, C. Polymer1975, 16, 191.
[55] Keith, H. D. and Padden, F. J. Jr. Polymer 1986, 27,
1463.
[56] Akfonso, G. C. and Russell, T. P. 19, 1143 (1986).
[57] Beech, D. R.; Booth, C.; Hillier, I. H.; Pickles, C.
J. Euro. Polym. J. 1972, 8, 799.
[58] Woo, E. M. and Mandal, T. K. Macromol. Rapid Commun.
1999, 20, 46.
[59] Kuo, S. W.; Huang, C. F.; Chang, F. C. J. Polym.
Sci. Polym. Phys 1998, 39, 1348.