簡易檢索 / 詳目顯示

研究生: 黃文俊
Huang, Wen-Chun
論文名稱: 蛋白酶Prc在腸道外致病性大腸桿菌致病機轉的角色
The role of protease Prc in pathogenesis of Extraintestinal Pathogenic Escherichia coli
指導教授: 鄧景浩
Teng, Ching-Hao
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 104
中文關鍵詞: Prc蛋白酶移動力鞭毛σE系統RcsCDB二元系統
外文關鍵詞: Prc protease, motility, flagella, σE system, RcsCDB two-component system
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸道外致病性大腸桿菌會造成許多腸道外感染的疾病,像是新生兒腦膜炎、菌血症、泌尿道感染。抗生素治療是傳統上治療大腸桿菌感染的方式。然而,抗藥性菌株的迅速崛起已成為控管細菌感染的嚴重問題。因此,急需發展新穎對抗微生物的策略來抵禦大腸桿菌的相關感染。對於細菌造成感染所需要的分子將會是制定這種戰略的潛力目標。細菌周質蛋白酶Prc可能是發展新穎對抗腸道外致病性大腸桿菌感染策略的潛力目標,因為我們的實驗室已經確認腸道外致病性大腸桿菌引起菌血症需要Prc的參與。然而尚未清楚蛋白酶Prc是否有助於腸道外致病性大腸桿菌在其他宿主組織造成的感染。在本研究中,我們揭露剔除prc基因會降低腸道外致病性大腸桿菌引起泌尿道感染的能力。根據蛋白質體分析,在prc基因剔除菌株中,細菌鞭毛的主要成份鞭毛蛋白(FliC)的表現量降低。因此,prc基因剔除菌株也顯示有缺陷的移動能力,並且有缺陷的移動能力是造成prc基因剔除菌株減少菌落殖民在膀胱和腎臟的原因。剔除prc基因會活化兩個細胞質外的信號傳遞系統,σE系統和RcsCDB二元系統。活化的這兩個信號傳遞系統會減少合成鞭毛的主要調節因子FlhDC的轉錄程度,進而降低鞭毛蛋白(FliC)的表現。此外,缺失Prc的蛋白酶功能是造成prc基因剔除菌株移動力缺陷的原因,這表示蛋白酶Prc的受質可能和prc基因剔除菌株缺陷的表型有關。如同預期,在prc基因剔除菌株中,Prc的受質Spr蛋白質的累積現象促使RcsCDB二元系統活化,而造成移動力下降。本研究增加了解蛋白酶Prc在菌血症之外,在腸道外致病性大腸桿菌引起泌尿道感染的角色,並且,證實蛋白酶Prc作為對抗微生物標的潛力角色。

    Extraintestinal Pathogenic Escherichia coli (ExPEC) are responsible for many extraintestinal infectious diseases, such as neonatal meningitis, bacteremia, and urinary tract infections (UTIs). Antibiotic therapy is the traditional way to treat E. coli infections. However, the rapid emergence of antibiotic resistant strains have become serious problems to manage the bacterial infections. Therefore, new antimicrobial strategies against the E. coli-associated infections are urgently needed. Bacterial factors required for the pathogens to cause infections will be potential targets for developing such strategies. The periplasmic protease Prc may be a potential antimicrobial target for the development of new strategies against ExPEC infection, because our laboratory has identified that Prc is required for ExPEC to cause bacteremia. However, it remains unclear whether this protease contributes to ExPEC infections in other host tissues. In this study, we revealed that deletion of prc decreased the ability of ExPEC to cause UTIs. Based on the proteome analysis, the major component of the flagellum filament, FliC, was down-regulated in the prc mutant. Therefore, the prc mutant of ExPEC showed defective motility which contributed to the decreased ability to colonize the bladder and kidney. Deletion of prc triggered the activation of two extracytoplasmic signaling pathways, the σE and the RcsCDB systems. The activation of the systems downregulated the transcription of flhDC, which encode the master regulator of flagellar biosynthesis, and thus suppressed the expression of fliC. In addition, the lack of the Prc protease function was found be responsible for the defective motility of the prc mutant, suggesting that the substrate of this protease may be involved in the defective phenotype of the mutant. As expected, accumulation of the known Prc substrate Spr in the prc mutant was shown to contribute to the activation of RcsCDB system, and thus to suppress the bacterial motility. This study strengthens an alternative role of Prc in the ExPEC UTIs, other than the ExPEC bacteremia, and substantiates the potential role of Prc as an antimicrobial targets.

    中文摘要 I Abstract II 誌謝 IV Contents VI List of Tables X List of Figures XI Abbreviations XIII 1. Introduction 1 1.1 The pathogenic Escherichia coli and E. coli-associated infections 1 1.1.1 The types of pathogenic E .coli 1 1.1.2 ExPEC associated infections in human 2 1.1.3 The features of the ExPEC strains used in this study 3 1.2 Antibiotic therapy and the problem of antibiotic resistant strain 4 1.3 Potential antimicrobial targets in the bacterial pathogens 5 1.4 Introduction of protease Prc 6 1.4.1 Characterization of prc 6 1.4.2 Prc and its homologs contribute to bacterial pathogenesis 6 1.4.3 The defective phenotypes caused by the deletion of prc 7 1.4.4 The functional domain of Prc 8 1.4.5 The known substrates of Prc 9 1.5 Introduction of flagella 10 1.5.1 Flagellum is an important virulence factor of bacterial pathogenesis 10 1.5.2 The flagellar regulon 10 1.5.3 The extracytoplasmic signals controlling flagellar regulon 11 1.6 The extracytoplasmic stress response systems 12 1.6.1 The activation of σE system 13 1.6.2 The activation of two-component system RcsCDB system 14 2. Specific Aims 15 3. Materials and methods 16 3.1 Bacterial strains, plasmids and growth condition 16 3.2 Construction of deletion mutants 16 3.3 Construction of recombinant plasmids 16 3.4 Urinary tract infection model 17 3.5 Motility assay 17 3.6 Analysis of the genes expression and RNA-Seq 18 3.6.1 RNA isolation 18 3.6.2 RNA sequencing and identification of differentially expressed genes 19 3.6.3 The complementary DNA synthesis 19 3.6.4 Real-time PCR (qPCR) and Reverse transcription-PCR (RT-PCR) 20 3.7 Purification of total bacterial proteins, outer membrane proteins and Liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis 20 3.8 Western blot analysis 22 3.9 Construction of strains with spr-3XFlag at the chromosomal locus. 22 3.10 Statistical analysis 23 4. Results 24 4.1 Deletion of prc in the Extraintestinal Pathogenic Escherichia coli (ExPEC) decreased the pathogen’s ability to colonize the bladder and kidney in the mouse model of urinary tract infection (UTI). 24 4.2 Identification of the outer membrane proteins whose expression were affected by deletion of prc. 24 4.3 Deletion of prc decreased the flagellin expression and motility of ExPEC. 25 4.4 The protease function of Prc was required for the bacterial motility and FliC expression. 26 4.5 Deletion of prc decreased the expression of the flagellar regulons. 26 4.6 Deletion of prc decreased the FliC expression and bacterial motility by suppressing the expression of the flhDC operon. 27 4.7 The defective motility was responsible for the defect of Δprc mutant in urinary tract infection. 27 4.8 Deletion of prc may activate five extracytoplasmic signaling pathways. 28 4.9 Blocking the activation of the σE or RcsCDB systems partially restored the decreased motility of the prc mutant of ExPEC. 29 4.10 The activation of σE and RcsCDB systems were involved in suppression of FliC expression and flhDC transcription in Δprc-RS218. 30 4.11 The activated σE system suppressed motility and the flhDC transcription. 30 4.12 The σE and RcsCDB systems worked independently to regulate the bacterial motility. 31 4.13 The accumulation of Spr contributed to defective motility and FliC expression of Δprc-RS218 through activating the RcsCDB system. 32 4.14 Deletion of prc decreased the bacterial motility and FliC expression through other manner independent of FlhDC. 33 4.15 The activated σE and RcsCDB systems decreased the bacterial motility and FliC expression through other manner independent of FlhDC. 33 5. Discussion 35 6. Tables 41 7. Figures 59 8. References 86

    1. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26:822-880.
    2. Bentley R, Meganathan R. 1982. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46:241-280.
    3. Hudault S, Guignot J, Servin AL. 2001. Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut 49:47-55.
    4. Croxen MA, Finlay BB. 2010. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8:26-38.
    5. Clements A, Young JC, Constantinou N, Frankel G. 2012. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 3:71-87.
    6. Ewers C, Li G, Wilking H, Kiessling S, Alt K, Antao EM, Laturnus C, Diehl I, Glodde S, Homeier T, Bohnke U, Steinruck H, Philipp HC, Wieler LH. 2007. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol 297:163-176.
    7. Dale AP, Woodford N. 2015. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J Infect 71:615-626.
    8. Manges AR, Johnson JR. 2015. Reservoirs of extraintestinal pathogenic Escherichia coli. Microbiol Spectr 3.
    9. Foxman B. 2010. The epidemiology of urinary tract infection. Nat Rev Urol 7:653-660.
    10. Mellata M. 2013. Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog Dis 10:916-932.
    11. Bien J, Sokolova O, Bozko P. 2012. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol 2012:681473.
    12. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123-140.
    13. Raymond J, Lopez E, Bonacorsi S, Poyart C, Moriette G, Jarreau PH, Bingen E. 2008. Evidence for transmission of Escherichia coli from mother to child in late-onset neonatal infection. Pediatr Infect Dis J 27:186-188.
    14. Furyk JS, Swann O, Molyneux E. 2011. Systematic review: neonatal meningitis in the developing world. Trop Med Int Health 16:672-679.
    15. Klinger G, Chin CN, Beyene J, Perlman M. 2000. Predicting the outcome of neonatal bacterial meningitis. Pediatrics 106:477-482.
    16. Sarff LD, McCracken GH, Schiffer MS, Glode MP, Robbins JB, Orskov I, Orskov F. 1975. Epidemiology of Escherichia coli K1 in healthy and diseased newborns. Lancet 1:1099-1104.
    17. Silver RP, Aaronson W, Sutton A, Schneerson R. 1980. Comparative analysis of plasmids and some metabolic characteristics of Escherichia coli K1 from diseased and healthy individuals. Infect Immun 29:200-206.
    18. Kim KS. 2012. Current concepts on the pathogenesis of Escherichia coli meningitis: implications for therapy and prevention. Curr Opin Infect Dis 25:273-278.
    19. Day MW, Jackson LA, Akins DR, Dyer DW, Chavez-Bueno S. 2015. Whole-genome sequences of the archetypal K1 Escherichia coli neonatal isolate RS218 and contemporary neonatal bacteremia clinical isolates SCB11, SCB12, and SCB15. Genome Announc 3.
    20. Xie Y, Kim KJ, Kim KS. 2004. Current concepts on Escherichia coli K1 translocation of the blood-brain barrier. FEMS Immunol Med Microbiol 42:271-279.
    21. Woodward S. 2015. E. coli: a brief overview. Br J Nurs 24:158, 160.
    22. Russo TA, Johnson JR. 2003. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5:449-456.
    23. Jackson LA, Benson P, Neuzil KM, Grandjean M, Marino JL. 2005. Burden of community-onset Escherichia coli bacteremia in seniors. J Infect Dis 191:1523-1529.
    24. Cross AS, Kim KS, Wright DC, Sadoff JC, Gemski P. 1986. Role of lipopolysaccharide and capsule in the serum resistance of bacteremic strains of Escherichia coli. J Infect Dis 154:497-503.
    25. Tseng YT, Wang SW, Kim KS, Wang YH, Yao Y, Chen CC, Chiang CW, Hsieh PC, Teng CH. 2012. NlpI facilitates deposition of C4bp on Escherichia coli by blocking classical complement-mediated killing, which results in high-level bacteremia. Infect Immun 80:3669-3678.
    26. Wang CY, Wang SW, Huang WC, Kim KS, Chang NS, Wang YH, Wu MH, Teng CH. 2012. Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infect Immun 80:3399-3409.
    27. Poolman JT, Wacker M. 2016. Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J Infect Dis 213:6-13.
    28. Belanger L, Garenaux A, Harel J, Boulianne M, Nadeau E, Dozois CM. 2011. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol Med Microbiol 62:1-10.
    29. Achtman M, Mercer A, Kusecek B, Pohl A, Heuzenroeder M, Aaronson W, Sutton A, Silver RP. 1983. Six widespread bacterial clones among Escherichia coli K1 isolates. Infect Immun 39:315-335.
    30. Wijetunge DS, Karunathilake KH, Chaudhari A, Katani R, Dudley EG, Kapur V, DebRoy C, Kariyawasam S. 2014. Complete nucleotide sequence of pRS218, a large virulence plasmid, that augments pathogenic potential of meningitis-associated Escherichia coli strain RS218. BMC Microbiol 14:203.
    31. Wijetunge DS, Katani R, Kapur V, Kariyawasam S. 2015. Complete genome sequence of Escherichia coli strain RS218 (O18:H7:K1), associated with neonatal meningitis. Genome Announc 3.
    32. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, Sabo A, Blasiar D, Bieri T, Meyer RR, Ozersky P, Armstrong JR, Fulton RS, Latreille JP, Spieth J, Hooton TM, Mardis ER, Hultgren SJ, Gordon JI. 2006. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci U S A 103:5977-5982.
    33. Mulvey MA, Schilling JD, Hultgren SJ. 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572-4579.
    34. Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, Doetkott C, Skyberg JA, Lynne AM, Johnson JR, Nolan LK. 2007. The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189:3228-3236.
    35. Kao JS, Stucker DM, Warren JW, Mobley HL. 1997. Pathogenicity island sequences of pyelonephritogenic Escherichia coli CFT073 are associated with virulent uropathogenic strains. Infect Immun 65:2812-2820.
    36. Welch RA, Burland V, Plunkett G, 3rd, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99:17020-17024.
    37. Lloyd AL, Rasko DA, Mobley HL. 2007. Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J Bacteriol 189:3532-3546.
    38. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. 2001. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 32:1162-1171.
    39. Tumbarello M, Sanguinetti M, Montuori E, Trecarichi EM, Posteraro B, Fiori B, Citton R, D'Inzeo T, Fadda G, Cauda R, Spanu T. 2007. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 51:1987-1994.
    40. Vasoo S, Barreto JN, Tosh PK. 2015. Emerging issues in gram-negative bacterial resistance: an update for the practicing clinician. Mayo Clin Proc 90:395-403.
    41. Schmiemann G, Gagyor I, Hummers-Pradier E, Bleidorn J. 2012. Resistance profiles of urinary tract infections in general practice--an observational study. BMC Urol 12:33.
    42. Pitout JD. 2012. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol 3:9.
    43. Maslow JN, Lautenbach E, Glaze T, Bilker W, Johnson JR. 2004. Colonization with extraintestinal pathogenic Escherichia coli among nursing home residents and its relationship to fluoroquinolone resistance. Antimicrob Agents Chemother 48:3618-3620.
    44. Smith JL, Fratamico PM, Gunther NW. 2007. Extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis 4:134-163.
    45. Wieser A, Romann E, Magistro G, Hoffmann C, Norenberg D, Weinert K, Schubert S. 2010. A multiepitope subunit vaccine conveys protection against extraintestinal pathogenic Escherichia coli in mice. Infect Immun 78:3432-3442.
    46. Gastmeier P, Schwab F, Meyer E, Geffers C. 2012. [Excess mortality and prolongation of stay due to bloodstream infections caused by multiresistant pathogens in Germany]. Dtsch Med Wochenschr 137:1689-1692.
    47. Aarestrup FM, Seyfarth AM, Emborg HD, Pedersen K, Hendriksen RS, Bager F. 2001. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob Agents Chemother 45:2054-2059.
    48. Johnson JR, Kuskowski MA, Gajewski A, Sahm DF, Karlowsky JA. 2004. Virulence characteristics and phylogenetic background of multidrug-resistant and antimicrobial-susceptible clinical isolates of Escherichia coli from across the United States, 2000-2001. J Infect Dis 190:1739-1744.
    49. Guardabassi L, Schwarz S, Lloyd DH. 2004. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 54:321-332.
    50. Johnson TJ, Jordan D, Kariyawasam S, Stell AL, Bell NP, Wannemuehler YM, Alarcon CF, Li G, Tivendale KA, Logue CM, Nolan LK. 2010. Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infect Immun 78:1931-1942.
    51. Asrat S, Davis KM, Isberg RR. 2015. Modulation of the host innate immune and inflammatory response by translocated bacterial proteins. Cell Microbiol 17:785-795.
    52. Godlewska R, Wisniewska K, Pietras Z, Jagusztyn-Krynicka EK. 2009. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. FEMS Microbiol Lett 298:1-11.
    53. Huerta AM, Collado-Vides J. 2003. Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J Mol Biol 333:261-278.
    54. Cho BK, Zengler K, Qiu Y, Park YS, Knight EM, Barrett CL, Gao Y, Palsson BO. 2009. The transcription unit architecture of the Escherichia coli genome. Nat Biotechnol 27:1043-1049.
    55. Kerr CH, Culham DE, Marom D, Wood JM. 2014. Salinity-dependent impacts of ProQ, Prc, and Spr deficiencies on Escherichia coli cell structure. J Bacteriol 196:1286-1296.
    56. Kornitzer D, Teff D, Altuvia S, Oppenheim AB. 1991. Isolation, characterization, and sequence of an Escherichia coli heat shock gene, htpX. J Bacteriol 173:2944-2953.
    57. Baumler AJ, Kusters JG, Stojiljkovic I, Heffron F. 1994. Salmonella typhimurium loci involved in survival within macrophages. Infect Immun 62:1623-1630.
    58. Reiling SA, Jansen JA, Henley BJ, Singh S, Chattin C, Chandler M, Rowen DW. 2005. Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. Microbiology 151:2251-2261.
    59. Bandara AB, Sriranganathan N, Schurig GG, Boyle SM. 2005. Carboxyl-terminal protease regulates Brucella suis morphology in culture and persistence in macrophages and mice. J Bacteriol 187:5767-5775.
    60. Bandara AB, DeShazer D, Inzana TJ, Sriranganathan N, Schurig GG, Boyle SM. 2008. A disruption of ctpA encoding carboxy-terminal protease attenuates Burkholderia mallei and induces partial protection in CD1 mice. Microb Pathog 45:207-216.
    61. Deng CY, Deng AH, Sun ST, Wang L, Wu J, Wu Y, Chen XY, Fang RX, Wen TY, Qian W. 2014. The periplasmic PDZ domain-containing protein Prc modulates full virulence, envelops stress responses, and directly interacts with dipeptidyl peptidase of Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 27:101-112.
    62. Liao CT, Liu YF, Chiang YC, Lo HH, Du SC, Hsu PC, Hsiao YM. 2016. Functional characterization and transcriptome analysis reveal multiple roles for prc in the pathogenicity of the black rot pathogen Xanthomonas campestris pv. campestris. Res Microbiol 167:299-312.
    63. Hara H, Yamamoto Y, Higashitani A, Suzuki H, Nishimura Y. 1991. Cloning, mapping, and characterization of the Escherichia coli prc gene, which is involved in C-terminal processing of penicillin-binding protein 3. J Bacteriol 173:4799-4813.
    64. Bass S, Gu Q, Christen A. 1996. Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J Bacteriol 178:1154-1161.
    65. Hara H, Abe N, Nakakouji M, Nishimura Y, Horiuchi K. 1996. Overproduction of penicillin-binding protein 7 suppresses thermosensitive growth defect at low osmolarity due to an spr mutation of Escherichia coli. Microb Drug Resist 2:63-72.
    66. Taylor PW. 1992. Complement-mediated killing of susceptible gram-negative bacteria: an elusive mechanism. Exp Clin Immunogenet 9:48-56.
    67. Seoane A, Sabbaj A, McMurry LM, Levy SB. 1992. Multiple antibiotic susceptibility associated with inactivation of the prc gene. J Bacteriol 174:7844-7847.
    68. Beebe KD, Shin J, Peng J, Chaudhury C, Khera J, Pei D. 2000. Substrate recognition through a PDZ domain in tail-specific protease. Biochemistry 39:3149-3155.
    69. Silber KR, Keiler KC, Sauer RT. 1992. Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. Proc Natl Acad Sci U S A 89:295-299.
    70. Keiler KC, Silber KR, Downard KM, Papayannopoulos IA, Biemann K, Sauer RT. 1995. C-terminal specific protein degradation: activity and substrate specificity of the Tsp protease. Protein Sci 4:1507-1515.
    71. Hansen G, Hilgenfeld R. 2013. Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell Mol Life Sci 70:761-775.
    72. Skorko-Glonek J, Zurawa-Janicka D, Koper T, Jarzab M, Figaj D, Glaza P, Lipinska B. 2013. HtrA protease family as therapeutic targets. Curr Pharm Des 19:977-1009.
    73. Keiler KC, Sauer RT. 1995. Identification of active site residues of the Tsp protease. J Biol Chem 270:28864-28868.
    74. Paetzel M, Dalbey RE, Strynadka NC. 2000. The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target. Pharmacol Ther 87:27-49.
    75. Nagasawa H, Sakagami Y, Suzuki A, Suzuki H, Hara H, Hirota Y. 1989. Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli. J Bacteriol 171:5890-5893.
    76. Tadokoro A, Hayashi H, Kishimoto T, Makino Y, Fujisaki S, Nishimura Y. 2004. Interaction of the Escherichia coli lipoprotein NlpI with periplasmic Prc (Tsp) protease. J Biochem 135:185-191.
    77. Singh SK, Parveen S, SaiSree L, Reddy M. 2015. Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis. Proc Natl Acad Sci U S A 112:10956-10961.
    78. Karzai AW, Roche ED, Sauer RT. 2000. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7:449-455.
    79. Bukau B. 1993. Regulation of the Escherichia coli heat-shock response. Mol Microbiol 9:671-680.
    80. Duan Q, Zhou M, Zhu L, Zhu G. 2013. Flagella and bacterial pathogenicity. J Basic Microbiol 53:1-8.
    81. Lane MC, Lockatell V, Monterosso G, Lamphier D, Weinert J, Hebel JR, Johnson DE, Mobley HL. 2005. Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73:7644-7656.
    82. Wright KJ, Seed PC, Hultgren SJ. 2005. Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73:7657-7668.
    83. Lane MC, Alteri CJ, Smith SN, Mobley HL. 2007. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A 104:16669-16674.
    84. Schwan WR. 2008. Flagella allow uropathogenic Escherichia coli ascension into murine kidneys. Int J Med Microbiol 298:441-447.
    85. Terashima H, Kojima S, Homma M. 2008. Flagellar motility in bacteria structure and function of flagellar motor. Int Rev Cell Mol Biol 270:39-85.
    86. Wang S, Fleming RT, Westbrook EM, Matsumura P, McKay DB. 2006. Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J Mol Biol 355:798-808.
    87. Shi W, Li C, Louise CJ, Adler J. 1993. Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J Bacteriol 175:2236-2240.
    88. Soutourina OA, Bertin PN. 2003. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505-523.
    89. De Wulf P, Kwon O, Lin EC. 1999. The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons. J Bacteriol 181:6772-6778.
    90. Price NL, Raivio TL. 2009. Characterization of the Cpx regulon in Escherichia coli strain MC4100. J Bacteriol 191:1798-1815.
    91. Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanie-Cornet MP, Gutierrez C, Cam K. 2003. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49:823-832.
    92. Shin S, Park C. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696-4702.
    93. Evans KL, Kannan S, Li G, de Pedro MA, Young KD. 2013. Eliminating a set of four penicillin binding proteins triggers the Rcs phosphorelay and Cpx stress responses in Escherichia coli. J Bacteriol 195:4415-4424.
    94. Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ. 2009. QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol 73:1020-1031.
    95. Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414.
    96. Rowley G, Spector M, Kormanec J, Roberts M. 2006. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4:383-394.
    97. Macritchie DM, Raivio TL. 2009. Envelope Stress Responses. EcoSal Plus 3.
    98. Mecsas J, Rouviere PE, Erickson JW, Donohue TJ, Gross CA. 1993. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 7:2618-2628.
    99. Raivio TL. 2005. Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 56:1119-1128.
    100. Laubacher ME, Ades SE. 2008. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J Bacteriol 190:2065-2074.
    101. Forst S, Delgado J, Inouye M. 1989. Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc Natl Acad Sci U S A 86:6052-6056.
    102. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. 2006. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 103:10420-10425.
    103. Raffa RG, Raivio TL. 2002. A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol 45:1599-1611.
    104. Leblanc SK, Oates CW, Raivio TL. 2011. Characterization of the induction and cellular role of the BaeSR two-component envelope stress response of Escherichia coli. J Bacteriol 193:3367-3375.
    105. Brissette JL, Russel M, Weiner L, Model P. 1990. Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci U S A 87:862-866.
    106. Clausen T, Kaiser M, Huber R, Ehrmann M. 2011. HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12:152-162.
    107. Kim DY. 2015. Two stress sensor proteins for the expression of sigmaE regulon: DegS and RseB. J Microbiol 53:306-310.
    108. Hasselblatt H, Kurzbauer R, Wilken C, Krojer T, Sawa J, Kurt J, Kirk R, Hasenbein S, Ehrmann M, Clausen T. 2007. Regulation of the sigmaE stress response by DegS: how the PDZ domain keeps the protease inactive in the resting state and allows integration of different OMP-derived stress signals upon folding stress. Genes Dev 21:2659-2670.
    109. Chaba R, Alba BM, Guo MS, Sohn J, Ahuja N, Sauer RT, Gross CA. 2011. Signal integration by DegS and RseB governs the sigma E-mediated envelope stress response in Escherichia coli. Proc Natl Acad Sci U S A 108:2106-2111.
    110. Lima S, Guo MS, Chaba R, Gross CA, Sauer RT. 2013. Dual molecular signals mediate the bacterial response to outer-membrane stress. Science 340:837-841.
    111. Alba BM, Leeds JA, Onufryk C, Lu CZ, Gross CA. 2002. DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev 16:2156-2168.
    112. Kanehara K, Ito K, Akiyama Y. 2002. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev 16:2147-2155.
    113. Akiyama Y, Kanehara K, Ito K. 2004. RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J 23:4434-4442.
    114. Flynn JM, Levchenko I, Sauer RT, Baker TA. 2004. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev 18:2292-2301.
    115. Fredericks CE, Shibata S, Aizawa S, Reimann SA, Wolfe AJ. 2006. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol Microbiol 61:734-747.
    116. Majdalani N, Heck M, Stout V, Gottesman S. 2005. Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J Bacteriol 187:6770-6778.
    117. Castanie-Cornet MP, Cam K, Jacq A. 2006. RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol 188:4264-4270.
    118. Clarke DJ, Joyce SA, Toutain CM, Jacq A, Holland IB. 2002. Genetic analysis of the RcsC sensor kinase from Escherichia coli K-12. J Bacteriol 184:1204-1208.
    119. Takeda S, Fujisawa Y, Matsubara M, Aiba H, Mizuno T. 2001. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC --> YojN --> RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 40:440-450.
    120. Majdalani N, Gottesman S. 2005. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379-405.
    121. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640-6645.
    122. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006 0008.
    123. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621-628.
    124. Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, Muniz-Rascado L, Garcia-Sotelo JS, Alquicira-Hernandez K, Martinez-Flores I, Pannier L, Castro-Mondragon JA, Medina-Rivera A, Solano-Lira H, Bonavides-Martinez C, Perez-Rueda E, Alquicira-Hernandez S, Porron-Sotelo L, Lopez-Fuentes A, Hernandez-Koutoucheva A, Del Moral-Chavez V, Rinaldi F, Collado-Vides J. 2016. RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res 44:D133-143.
    125. Dartigalongue C, Missiakas D, Raina S. 2001. Characterization of the Escherichia coli sigma E regulon. J Biol Chem 276:20866-20875.
    126. Gerken H, Charlson ES, Cicirelli EM, Kenney LJ, Misra R. 2009. MzrA: a novel modulator of the EnvZ/OmpR two-component regulon. Mol Microbiol 72:1408-1422.
    127. Lan CY, Igo MM. 1998. Differential expression of the OmpF and OmpC porin proteins in Escherichia coli K-12 depends upon the level of active OmpR. J Bacteriol 180:171-174.
    128. Alba BM, Zhong HJ, Pelayo JC, Gross CA. 2001. degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide sigma (E) activity. Mol Microbiol 40:1323-1333.
    129. Davalos-Garcia M, Conter A, Toesca I, Gutierrez C, Cam K. 2001. Regulation of osmC gene expression by the two-component system rcsB-rcsC in Escherichia coli. J Bacteriol 183:5870-5876.
    130. De Wulf P, McGuire AM, Liu X, Lin EC. 2002. Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem 277:26652-26661.
    131. Clarke MB, Sperandio V. 2005. Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). Mol Microbiol 58:441-455.
    132. Maris AE, Walthers D, Mattison K, Byers N, Kenney LJ. 2005. The response regulator OmpR oligomerizes via beta-sheets to form head-to-head dimers. J Mol Biol 350:843-856.
    133. Rezuchova B, Miticka H, Homerova D, Roberts M, Kormanec J. 2003. New members of the Escherichia coli sigmaE regulon identified by a two-plasmid system. FEMS Microbiol Lett 225:1-7.
    134. Ferrieres L, Aslam SN, Cooper RM, Clarke DJ. 2007. The yjbEFGH locus in Escherichia coli K-12 is an operon encoding proteins involved in exopolysaccharide production. Microbiology 153:1070-1080.
    135. Danese PN, Silhavy TJ. 1997. The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes Dev 11:1183-1193.
    136. Singh SK, SaiSree L, Amrutha RN, Reddy M. 2012. Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol Microbiol 86:1036-1051.
    137. Walsh NP, Alba BM, Bose B, Gross CA, Sauer RT. 2003. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:61-71.
    138. Schwechheimer C, Rodriguez DL, Kuehn MJ. 2015. NlpI-mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in Escherichia coli. Microbiologyopen 4:375-389.
    139. Raina S, Missiakas D, Georgopoulos C. 1995. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J 14:1043-1055.
    140. Fahrner KA, Berg HC. 2015. Mutations that stimulate flhDC expression in Escherichia coli K-12. J Bacteriol 197:3087-3096.
    141. Ko M, Park C. 2000. H-NS-Dependent regulation of flagellar synthesis is mediated by a LysR family protein. J Bacteriol 182:4670-4672.
    142. Yona-Nadler C, Umanski T, Aizawa S, Friedberg D, Rosenshine I. 2003. Integration host factor (IHF) mediates repression of flagella in enteropathogenic and enterohaemorrhagic Escherichia coli. Microbiology 149:877-884.
    143. Dressaire C, Moreira RN, Barahona S, Alves de Matos AP, Arraiano CM. 2015. BolA is a transcriptional switch that turns off motility and turns on biofilm development. MBio 6:e02352-02314.
    144. Santos JM, Freire P, Vicente M, Arraiano CM. 1999. The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol 32:789-798.
    145. Blaszczak A, Zylicz M, Georgopoulos C, Liberek K. 1995. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase. EMBO J 14:5085-5093.
    146. Wang QP, Kaguni JM. 1989. A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli. J Bacteriol 171:4248-4253.
    147. Redford P, Roesch PL, Welch RA. 2003. DegS is necessary for virulence and is among extraintestinal Escherichia coli genes induced in murine peritonitis. Infect Immun 71:3088-3096.
    148. Rowley G, Stevenson A, Kormanec J, Roberts M. 2005. Effect of inactivation of degS on Salmonella enterica serovar typhimurium in vitro and in vivo. Infect Immun 73:459-463.
    149. Miajlovic H, Cooke NM, Moran GP, Rogers TR, Smith SG. 2014. Response of extraintestinal pathogenic Escherichia coli to human serum reveals a protective role for Rcs-regulated exopolysaccharide colanic acid. Infect Immun 82:298-305.
    150. Li K, Sacks SH, Sheerin NS. 2008. The classical complement pathway plays a critical role in the opsonisation of uropathogenic Escherichia coli. Mol Immunol 45:954-962.
    151. Lerner CG, Inouye M. 1990. Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res 18:4631.
    152. Yamamoto K, Ishihama A. 2006. Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci Biotechnol Biochem 70:1688-1695.
    153. Rhodius VA, Suh WC, Nonaka G, West J, Gross CA. 2006. Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol 4:e2.
    154. Chaulk SG, Smith Frieday MN, Arthur DC, Culham DE, Edwards RA, Soo P, Frost LS, Keates RA, Glover JN, Wood JM. 2011. ProQ is an RNA chaperone that controls ProP levels in Escherichia coli. Biochemistry 50:3095-3106.
    155. Shimohata N, Chiba S, Saikawa N, Ito K, Akiyama Y. 2002. The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site. Genes Cells 7:653-662.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE