簡易檢索 / 詳目顯示

研究生: 顏世偉
Yen, Shih-Wei
論文名稱: 使用添加生長載體的連續供料批式反應器以本土破囊壺藻Aurantiochytrium sp. CJ6發酵高粱酒粕產製蝦紅素
Fermentative production of astaxanthin from sorghum distillery residue by an indigenous Aurantiochytrium sp. CJ6 strain using a growth carrier loaded continuous-feeding fed-batch process
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 144
中文關鍵詞: 高粱酒糟蝦紅素破囊壺菌連續補料批次光照強度生長載體生物炭焙燒熱重分析粒子群優化循環經濟
外文關鍵詞: Sorghum distillery residue, astaxanthin, Aurantiochytrium sp., continuous-feeding fed-batch, light intensity, growth carrier, biochar, torrefaction, Thermogravimetric analysis, particle swarm optimization (PSO), circular economy
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蝦紅素具有很強的抗氧化活性,近年來被廣泛用於營養保健品、醫藥領域、化妝品、水產養殖業的天然色素來源等領域。蝦紅素的來源很多,包含人工合成及天然來源。人工合成的蝦紅素佔商業市場的99%,而天然來源只佔1%。人工合成的蝦紅素主要有三個缺點:(1) 製作過程中會產生大量的環境污染物,(2) 含有不具功效的異構物,及(3)消費者食用上的健康疑慮等。天然蝦紅素主要來自藻類,其中雨生紅球藻是最常用的蝦紅素生產藻株,因其細胞的蝦紅素含量高,可高達4%。然而雨生紅球藻養殖不易,且生長速度緩慢,不利於商業化生產,且生產成本偏高。因此,開發替代雨生紅球藻的天然蝦紅素來源實勢在必行。本研究採用一株高潛力蝦紅素生產菌株,即Aurantiochytrium sp. CJ6,進行蝦紅素之生產,並開發新的發酵策略及幫助菌株生長的載體,以提升其商業應用的可行性。
    本研究使用的Aurantiochytrium sp. CJ6菌株為一種消耗有機碳源的破囊壺藻 (又稱破囊壺菌),它是從南台灣沿海篩選出來的本土菌株。為因應循環經濟概念,本研究選用高粱酒醩(sorghum distillery residue, SDR)做為培養基的料源,以進行資源回收再利用。SDR是中式白酒生產過程中產生的生物廢棄物,其中仍殘留大量的澱粉和少量的蛋白質。將SDR進行酸水解,可將澱粉轉化為醣,產生高碳/氮比的高粱酒醩水解液(SDR-hydrolysate),可直接使用為CJ6生長的培養基,不需額外添加氮源,故可大幅降低培養基的成本。
    批次實驗的結果顯示,當鹽度為2.5%,通氣率為0.2-0.4 vvm,pH值控制在7.5時,最大細胞濃度為3.3 g/L。此外,適當控制光照時間,在培養第5天至第9天連續提供光源4天的條件下,可獲得最大的蝦紅素含量為69.23 g/g (乾細胞重量,dry cell weight, DCW)。以上條件為CJ6的最佳批次生長條件。
    為加速CJ6菌體之生長,本研究嘗試在醱酵槽中加入生長載體,並以SDR來製備生物炭,做為CJ6菌種的生長載體。SDR的主要成分為澱粉,焙燒後產生的高粱酒醩生物炭(SDR-biochar)具有粗糙的表面,具有約20-80微米孔徑的凹洞,非常適合做為CJ6 (細胞大小約為3-5微米)的生長載體。實驗結果證實添加SDR-biochar可以加速CJ6生長。因此,本研究進一步深入探討自製SDR-biochar載體的製備方式及其特性,並以AI的工具及動力學模型的假設,幾近完美地模擬了真實焙燒反應的動力學,並發現在275oC恆溫焙燒60分鐘可以得到最佳的SDR-biochar 載體。將此SDR-biochar275 (275°C恆溫焙燒產生的SDR-biochar) 加入發酵槽中可以加速CJ6細胞生長,因而大幅提升蝦紅素的生產速率 (productivity)。
    最後,我們是以新的醱酵策略CF-FB結合SDR-ciochar275的方式來增加蝦紅素的生產速率。本研究提出的所謂的連續補料批次(Continuous-feeding fed-batch, CF-FB)的新的操作方式,是使用蠕動泵緩慢注入SDR-hydrolysate,以保持醱酵狀態長時間維持在一個 「營養飢餓的不利環境」之下。在此操作條件下,CJ6菌體為了要自我保護而加速蝦紅素的合成與累積。具體而言,添加SDR-生物炭可將蝦紅素生產率從 0.026 mg/L/D提高到0.070 mg/L/D,顯著提高169%。因此,SDR不僅適合做為CJ6生長的培養基,而且還可以通過焙燒轉化為生物炭顆粒作為生長載體以促進CJ6細胞的生長。使用SDR-biochar顆粒作為生長載體有助於解決CJ6培養時間過長的問題。SDR-biochar為細胞生長提供有利的環境,生物炭顆粒的使用縮短了培養時間並提高了培養的效率。實驗結果顯示,以SDR做為循環經濟平台,有利於應用SDR養藻產製蝦紅素的高價值再利用,並提升以CJ6菌種產製蝦紅素之商業化生產的可行性。

    Due to its potent antioxidant activity, astaxanthin is extensively utilized in nutraceutical supplements, the pharmaceutical industry, cosmetics, and as a natural pigment source in aquaculture. While it can be artificially synthesized or naturally sourced, the former accounts for 99% of the market. Artificial synthesis, however, poses environmental, efficacy, and health concerns. Among natural sources, microalgae like Haematococcus pluvialis, containing up to 4% astaxanthin in its cells, are prominent. This study aimed to explore new natural astaxanthin sources beyond H. pluvialis, focusing on the astaxanthin-rich strain Aurantiochytrium sp. CJ6, and its commercial viability.
    The CJ6 strain, a high organic carbon-consuming thraustochytrid, was isolated from Taiwan's southern coast. The study used sorghum distillery residue (SDR), a byproduct of Chinese liquor production, as the feedstock for the culture medium. Acid hydrolysis of SDR converts its abundant starch into sugars, resulting in a high carbon-to-nitrogen ratio in the hydrolysate. This makes it an ideal culture medium for CJ6 growth without the need of additional nitrogen sources.
    Batch experiment results indicated optimal growth conditions for CJ6 as 2.5% salinity, an aeration rate of 0.2-0.4 vvm, and a pH of 7.5. With these conditions and proper light exposure control, the maximum astaxanthin content obtained was 69.23 μg/g (dry cell weight, DCW).
    To promote growth, a growth carrier was introduced into the fermenter. The SDR-biochar, produced after torrefaction of SDR, provided a suitable habitat for CJ6 cells due to its rough surface with large cavities. Experimental results confirmed accelerated CJ6 growth with the addition of SDR-biochar, optimized through AI and kinetic modeling to be produced by torrefying at 275°C for 60 minutes.
    SDR-biochar was created through isothermal torrefaction for use as a growth carrier. The two-step parallel reaction (TPR) kinetic model was used to investigate the torrefaction kinetics of SDR, optimized with the Particle Swarm Optimization (PSO) algorithm. The resulting SDR-biochar275 was added to the culture medium, promoting CJ6 growth.
    Finally, the study aimed to increase astaxanthin productivity by combining the CF-FB strategy with SDR-biochar275. The slow infusion of SDR-hydrolysate maintained an unfavorable environment, triggering astaxanthin synthesis in cells under high light stress. This approach significantly improved astaxanthin productivity by 169%. This study demonstrated that SDR is not only suitable as a culture medium for CJ6 cultivation but can also be converted into a growth-promoting biochar. This approach shortens cultivation time, improves efficiency, and offers a potential solution for biowaste disposal. The study also suggests that cultivating CJ6 for astaxanthin production in this manner greatly enhances commercial-scale production feasibility.

    摘要 I Abstract III Acknowledgments V Contents VI List of Tables X List of Figures XII Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation and purpose 2 1-3 Research scheme 3 Chapter 2 Literature review 7 2-1 Introduction of astaxanthin 7 2-2 The potential of thraustochytrids in astaxanthin production 13 2-3 Acid hydrolysis and reuse of SDR in fermentation and animal feed 17 2-4 Cultivation conditions for astaxanthin-producing strains 21 2-5 Biochar and torrefaction 26 2-6 Torrefaction kinetics simulation with an artificial intelligence tool, PSO algorithm, for optimization of the self-made growth carrier (SDR-biochar) production 29 2-7 The utilization of SDR-biochar as a growth carrier and its underlying mechanisms 31 2-8 Culture strategies and CF-FB 33 Chapter 3 Materials and methods 34 3-1 Chemicals and materials 34 3-2 Equipment 35 3-3 The producing strain: Aurantiochytrium sp. CJ6 38 3-4 Source and proximate analysis of SDR 40 3-5 Preparation of culture medium 41 3-6 Various parameters for optimizing CJ6 cultivation 42 3-7 Self-made growth carrier: SDR-biochar 43 3-7-1 Thermogravimetric analysis 44 3-7-2 Isothermal torrefaction kinetics 45 3-7-3 Two-step reaction mechanism 47 3-7-4 Particle Swarm Optimization (PSO) 48 3-7-5 Preparation of growth carrier 52 3-8 Fed-batch cultivation with SDR-biochar for improvement of CJ6 growth 53 3-9 Determination of inhibitors and metal ions for mechanism stud 55 3-10 Analytical methods 55 3-10-1 Determination of total carbohydrates 55 3-10-2 Determination of the total nitrogen concentration 56 3-10-3 Determination of the cell mass concentration 57 3-10-4 Determination for the content, concentration and productivity of astaxanthin 58 Chapter 4 Results and Discussion for the optimization of culture conditions 61 4-1 Chemical composition of sorghum distillery residue (SDR) 61 4-2 Hydrolysis with different inorganic acids 62 4-3 The C/N ratio 64 4-4 Effect of salinity on cell growth 65 4-5 Effect of aeration on cell growth 67 4-6 Effect of pH value in cultivation on cell growth 69 4-7 Effects of luminance on cell growth and astaxanthin content 71 4-8 Fermentation strategies: PF-FB vs. CF-FB 75 Chapter 5 Results and discussion for the self-made growth carrier 79 5-1 Basic properties and thermogravimetric analysis 79 5-2 Isothermal torrefaction 83 5-3 Torrefaction kinetics from the traditional Model-Free approach 89 5-4 Torrefaction kinetics from PSO approach 94 Chapter 6 Results and discussion for the culture strategy 101 6-1 Effect of the adding amount of SDR-biochar on cell mass production of Aurantiochytrium sp. CJ6 101 6-2 Effect of light intensity on astaxanthin accumulation in Aurantiochytrium sp. CJ6 107 6-3 Fed-batch fermentation with growth carrier for the enhancement of astaxanthin production 110 Chapter 7 Conclusions 118 7-1 The optimization of the culture and fermentation conditions for Aurantiochytrium sp. CJ6 118 7-1-1 Summary of the findings 118 7-1-2 Research highlights 119 7-1-3 Novelty and significance of the results 119 7-2 Optimization of production conditions for the self-made SDR-biochar used as growth carrier for CJ6 121 7-3 Cultivation of Aurantiochytrium sp. CJ6 in a CF-FB fermenter using SDR-biochar as the growth carrier 123 7-3-1 Summary of findings 123 7-3-2 Research highlights of the results 124 7-3-3 Novelty and significance of the results 126 7-4 Circular economy for SDR 127 7-5 Future perspectives 129 Appendix 131 A-1 The calibration curve of total carbohydrates and absorbance values 131 A-2 The calibration curve of astaxanthin 132 A-3 The HPLC Chromatograms of astaxanthin 133 A-4 The calibration curve of acetic acid 134 A-5 The calibration curve of furfural 135 A-6 The calibration curve of 5-HMF 136 References 137

    Aflalo, C., Meshulam, Y., Zarka, A., Boussiba, S. 2007. On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnology and bioengineering, 98(1), 300-5.
    Aki, T., Hachida, K., Yoshinaga, M., Katai, Y., Yamasaki, T., Kawamoto, S., Kakizono, T., Maoka, T., Shigeta, S., Suzuki, O. 2003. Thraustochytrid as a potential source of carotenoids. Journal of the American Oil Chemists' Society, 80, 789-794.
    Ambati, D.R.R., Sarada, R., Baskaran, V., Gokare, R. 2009. Identification of Carotenoids from Green Alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and Their Antioxidant Properties. Journal of microbiology and biotechnology, 19, 1333-41.
    Aquilanti, V., Mundim, K.C., Cavalli, S., De Fazio, D., Aguilar, A., Lucas, J.M. 2012. Exact activation energies and phenomenological description of quantum tunneling for model potential energy surfaces. The F+H2 reaction at low temperature. Chemical Physics, 398, 186-191.
    Bach, Q.V., Chen, W.H., Chu, Y.S., Skreiberg, O. 2016. Predictions of biochar yield and elemental composition during torrefaction of forest residues. Bioresource Technology, 215, 239-246.
    Bowen, J., Soutar, C., Serwata, R.D., Lagocki, S., White, D.A., Davies, S.J., Young, A.J. 2002. Utilization of (3S,3′S)-astaxanthin acyl esters in pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture nutrition, 8, 59-68.
    Cai, J., He, P., Wang, Y., Shao, L., Lu, F. 2016. Effects and optimization of the use of biochar in anaerobic digestion of food wastes. Waste Management & Research, 34(5), 409-16.
    Carmona, M.L., Naganuma, T., Yamaoka, Y. 2003. Identification by HPLC-MS of carotenoids of the Thraustochytrium CHN-1 strain isolated from the Seto Inland Sea. Bioscience, Biotechnology, and Biochemistry, 67(4), 884-8.
    Chaisawang, M., Verduyn, C., Chauvatcharin, S., Suphantharika, M. 2012. Metabolic networks and bioenergetics of Aurantiochytrium sp. B-072 during storage lipid formation. Brazilian Journal of Microbiology, 43, 1192-1205.
    Chauhan, A.S., Chen, C.-W., Yadav, H., Parameswaran, B., Singhania, R.R., Dong, C.-D., Patel, A.K. 2023. Assessment of thraustochytrids potential for carotenoids, terpenoids and polyunsaturated fatty acids biorefinery. Journal of Food Science and Technology, 60, 2955–2967.
    Chaung, K.-C., Chu, C.-Y., Su, Y.-M., Chen, Y.-M. 2012. Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10. AMB Express, 2(1).
    Chen, P., Xie, F., Zhao, L., Qiao, Q., Liu, X. 2017. Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content. Food Hydrocolloids, 69, 359-368.
    Chen, W.-H., Chu, Y.-S., Liu, J.-L., Chang, J.-S. 2018. Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation. Energy Conversion and Management, 160, 209-219.
    Chen, W.-H., Eng, C.F., Lin, Y.-Y., Bach, Q.-V. 2020a. Independent parallel pyrolysis kinetics of cellulose, hemicelluloses and lignin at various heating rates analyzed by evolutionary computation. Energy Conversion and Management, 221.
    Chen, W.-H., Kuo, P.-C. 2011. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy, 36(11), 6451-6460.
    Chen, W.-H., Peng, J., Bi, X.T. 2015. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847-866.
    Chen, W.H., Huang, M.Y., Chang, J.S., Chen, C.Y. 2014. Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresource Technology, 169, 258-264.
    Chen, W.H., Lo, H.J., Yu, K.L., Ong, H.C., Sheen, H.K. 2021. Valorization of sorghum distillery residue to produce bioethanol for pollution mitigation and circular economy. Environmental Pollution, 285, 117196.
    Chen, W.H., Lu, K.M., Tsai, C.M. 2012. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Applied Energy, 100, 318-325.
    Chen, Y.-D., Liu, F., Ren, N.-Q., Ho, S.-H. 2020b. Revolutions in algal biochar for different applications: State-of-the-art techniques and future scenarios. Chinese Chemical Letters, 31(10), 2591-2602.
    Chew, J.J., Doshi, V. 2011. Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renewable and Sustainable Energy Reviews, 15(8), 4212-4222.
    Ciolkosz, D., Wallace, R. 2011. A review of torrefaction for bioenergy feedstock production. Biofuels, Bioproducts and Biorefining, 5(3), 317-329.
    Codignole Luz, F., Cordiner, S., Manni, A., Mulone, V., Rocco, V. 2018. Biochar characteristics and early applications in anaerobic digestion-a review. Journal of Environmental Chemical Engineering, 6(2), 2892-2909.
    Dawes, E., Large, P. 1970. Effect of starvation on the viability and cellular constituents of Zymomonas anaerobia and Zymomonas mobilis. Microbiology, 60(1), 31-42.
    Ekpe, L., Inaku, K., Ekpe, V. 2018. Antioxidant effects of astaxanthin in various diseases—A review. Molecular Pathophysiology, 7(1), 1-6.
    El-Tayeb, T.S., Abdelhafez, A.A., Ali, S.H., Ramadan, E.M. 2012. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. Brazilian journal of microbiology, 43, 1523-1535.
    Fagbohungbe, M.O., Herbert, B.M., Hurst, L., Li, H., Usmani, S.Q., Semple, K.T. 2016. Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresource Technology, 216, 142-9.
    Furlan, V.J.M., Batista, I., Bandarra, N., Mendes, R., Cardoso, C. 2019. Conditions for the Production of Carotenoids by Thraustochytrium sp. ATCC 26185 and Aurantiochytrium sp. ATCC PRA-276. Journal of Aquatic Food Product Technology, 28(5), 465-477.
    Ganuza, E., Yang, S., Amezquita, M., Giraldo-Silva, A., Andersen, R.A. 2019. Genomics, Biology and Phylogeny Aurantiochytrium acetophilum sp. nov. (Thraustrochytriaceae), Including First Evidence of Sexual Reproduction. Protist, 170(2), 209-232.
    George, B. 1995. Structure and properties of carotenoids in relation to function. The FASEB Journal.
    Heggeset, T.M.B., Ertesvag, H., Liu, B., Ellingsen, T.E., Vadstein, O., Aasen, I.M. 2019. Lipid and DHA-production in Aurantiochytrium sp. - Responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes. Scientific Reports, 9(1), 19470.
    Higuera-Ciapara, I., Felix-Valenzuela, L., Goycoolea, F.M. 2006. Astaxanthin: a review of its chemistry and applications. Critical Reviews in Food Science and Nutrition, 46(2), 185-96.
    Iwasaka, H. 2013. Utilization of waste syrup for production of polyunsaturated fatty acids and xanthophylls by Aurantiochytrium. Journal of oleo science, 62(9), 729-736.
    Khumrangsee, K., Charoenrat, T., Praiboon, J., Chittapun, S. 2022. Development of a fed-batch fermentation with stepwise aeration to enhance docosahexaenoic acid and carotenoid content in Aurantiochytrium sp. FIKU018. Journal of Applied Phycology, 34(3), 1243-1253.
    Kim, K., Jung Kim, E., Ryu, B.G., Park, S., Choi, Y.E., Yang, J.W. 2013. A novel fed-batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid. Bioresource Technology, 135, 269-74.
    Kobayashi, M., Nishio, T.K.N., Nagai, S. 1992. Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 74(1), 61-63.
    Kubo, Y., Morimoto, D., Shiroi, M., Yoshimi, T., Ohara, K., Higashine, T., Mori, Y., Takeuchi, M., Sawayama, S. 2022. Transcriptional responses of Aurantiochytrium limacinum under light conditions. Journal of Applied Microbiology, 132(6), 4330-4337.
    Kubo, Y., Shiroi, M., Higashine, T., Mori, Y., Morimoto, D., Nakagawa, S., Sawayama, S. 2021. Enhanced Production of Astaxanthin without Decrease of DHA Content in Aurantiochytrium limacinum by Overexpressing Multifunctional Carotenoid Synthase Gene. Applied Biochemistry and Biotechnology, 193(1), 52-64.
    Lemoine, Y., Schoefs, B. 2010. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynthesis research, 106(1-2), 155-77.
    Lim, K.C., Yusoff, F.M., Shariff, M., Kamarudin, M.S. 2018. Astaxanthin as feed supplement in aquatic animals. Reviews in Aquaculture, 10(3), 738-773.
    Liu, J.-L., Lin, J.-H. 2007. Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization. Engineering Optimization, 39(3), 287-305.
    Liu, X., Luo, Q., Cao, Y., Goulette, T., Liu, X., Xiao, H. 2016. Mechanism of Different Stereoisomeric Astaxanthin in Resistance to Oxidative Stress in Caenorhabditis elegans. Journal of Food Science and Technology, 81(9), H2280-7.
    Lu, K.-M., Lee, W.-J., Chen, W.-H., Lin, T.-C. 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Applied Energy, 105, 57-65.
    Mašek, O. 2016. Biochar in thermal and thermochemical biorefineries—production of biochar as a coproduct. in: Handbook of Biofuels Production, Elsevier Inc., pp. 655-671.
    Miki, W. 1991. Biological functions and activities of animal carotenoids. Pure and applied chemistry, 43, 141-146.
    Nair, A., Ahirwar, A., Singh, S., Lodhi, R., Lodhi, A., Rai, A., Jadhav, D.A., Harish, Varjani, S., Singh, G., Marchand, J., Schoefs, B., Vinayak, V. 2023. Astaxanthin as a King of Ketocarotenoids: Structure, Synthesis, Accumulation, Bioavailability and Antioxidant Properties. Marine Drugs, 21(3).
    Nielsen, S.S. 2010. Phenol-Sulfuric Acid Method for Total Carbohydrates. in: Food Analysis Laboratory Manual, pp. 47-53.
    Olaizola, M. 2000. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology, 12, 499–506.
    Orosa, M., Torres, E., Fidalgo, P., Abalde, J. 2000. Production and analysis of secondary carotenoids in green algae. Journal of Applied Phycology 12, pages553–556.
    Østerlie, M., Bjerkeng, B., Liaaen-Jensen, S. 1999. Accumulation of astaxanthin all E 9z and 13z geometrical isomers and 3 and 3 optical isomers in rainbow trout Oncorhynchus mykiss is selective. The Journal of nutrition, 129(2), 391-398.
    Park, W.-K., Moon, M., Shin, S.-E., Cho, J.M., Suh, W.I., Chang, Y.K., Lee, B. 2018. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Research, 29, 71-79.
    Peng, W.M., Wu, Q.Y., Tu, P.G. 2001a. Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production. Journal of Applied Phycology, 13(1), 5-12.
    Peng, W.M., Wu, Q.Y., Tu, P.G., Zhao, N.M. 2001b. Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresource Technology, 80(1), 1-7.
    Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G. 2006. Torrefaction of wood. Journal of Analytical and Applied Pyrolysis, 77(1), 28-34.
    Ranga Rao, A., Raghunath Reddy, R.L., Baskaran, V., Sarada, R., Ravishankar, G.A. 2010. Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. J Agric Food Chem, 58(15), 8553-9.
    Rizzo, A.M., Prussi, M., Bettucci, L., Libelli, I.M., Chiaramonti, D. 2013. Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Applied Energy, 102, 24-31.
    Rosa, S.M., Soria, M.A., Velez, C.G., Galvagno, M.A. 2010. Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Bioresource Technology, 101(7), 2367-2374.
    Rousset, P., Aguiar, C., Labbe, N., Commandre, J.M. 2011. Enhancing the combustible properties of bamboo by torrefaction. Bioresource Technology, 102(17), 8225-8231.
    Steinbrenner, J., Linden, H. 2001. Regulation of Two Carotenoid Biosynthesis Genes Coding for Phytoene Synthase and Carotenoid Hydroxylase during Stress Induced Astaxanthin Formation in the Green Alga Haematococcus pluvialis. Plant physiology, 125(2), 810–817.
    Storebakken, T., No, H.K. 1992. Pigmentation of rainbow trout. Aquaculture, 100(1-3), 209-229.
    Suen, Y.L., Tang, H., Huang, J., Chen, F. 2014. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. Agricultural and Food Chemistry, 62(51), 12392-8.
    Sun, J., Yan, J., Dong, H., Gao, K., Yu, K., He, C., Mao, X. 2023. Astaxanthin with different configurations: sources, activity, post modification, and application in foods. Current Opinion in Food Science, 49, 100955.
    Tanaka, T., Morishita, Y., Suzui, M., Kojima, T., Okumura, A., Mori, H. 1994. Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogenesis, 15(1), 15-19.
    Tharek, A., Yahya, A., Salleh, M.M., Jamaluddin, H., Yoshizaki, S., Dolah, R., Hara, H., Iwamoto, K., Mohamad, S.E. 2020. Improvement of Astaxanthin Production in Coelastrum sp. by Optimization Using Taguchi Method. Applied Food Biotechnology, 7(4), 205-214.
    Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J., Masojídek, J. 2003. Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. Journal of Applied Phycology, 15, 127-136.
    TURUJMAN, S.A., WAMER, W.G., WEI, R.R., ALBERT, R.H. 1997. Rapid liquid chromatographic method to distinguish wild salmon from aquacultured salmon fed synthetic astaxanthin. Journal of AOAC International, 80(3), 622–632.
    Urich, K. 1994. Comparative Animal Biochemistry.
    van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J. 2011. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy, 35(9), 3748-3762.
    Wang, J., Han, D., Sommerfeld, M.R., Lu, C., Hu, Q. 2012. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. Journal of Applied Phycology, 25(1), 253-260.
    Wang, S., Copeland, L. 2015. Effect of acid hydrolysis on starch structure and functionality: a review. Critical Reviews in Food Science and Nutrition, 55(8), 1081-97.
    Wang, W.T., Dai, L.C., Wu, B., Qi, B.F., Huang, T.F., Hu, G.Q., He, M.X. 2020. Biochar-mediated enhanced ethanol fermentation (BMEEF) in Zymomonas mobilis under furfural and acetic acid stress. Biotechnology for Biofuels, 13, 28.
    Wang, Y., Peng, J. 2008. Growth-associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chlorophyta). World Journal of Microbiology and Biotechnology, 24(9), 1915-1922.
    Watanabe, K., Arafiles, K.H.V., Higashi, R., Okamura, Y., Tajima, T., Matsumura, Y., Nakashimada, Y., Matsuyama, K., Aki, T. 2018. Isolation of High Carotenoid-producing Aurantiochytrium sp. Mutants and Improvement of Astaxanthin Productivity Using Metabolic Information. Journal of Oleo Science, 67(5), 571-578.
    Xiao, R., Li, X., Leonard, E., Tharayil, N., Zheng, Y. 2019. Investigation on the effects of cultivation conditions, fed-batch operation, and enzymatic hydrolysate of corn stover on the astaxanthin production by Thraustochytrium striatum. Algal Research, 39, 101475.
    Xiao, R., Li, X., Zheng, Y. 2018. Comprehensive Study of Cultivation Conditions and Methods on Lipid Accumulation of a Marine Protist, Thraustochytrium striatum. Protist, 169(4), 451-465.
    Yamaoka, Y., Carmona, M.L., Oota, S. 2004. Growth and carotenoid production of Thraustochytrium sp. CHN-1 cultured under superbright red and blue light-emitting diodes. Bioscience, Biotechnology, and Biochemistry, 68(7), 1594-7.
    Yang, L., Qiao, X., Gu, J., Li, X., Cao, Y., Xu, J., Xue, C. 2021. Influence of molecular structure of astaxanthin esters on their stability and bioavailability. Food Chemistry, 343, 128497.
    Ye, G., Luo, H., Ren, Z., Ahmad, M.S., Liu, C.-G., Tawab, A., Al-Ghafari, A.B., Omar, U., Gull, M., Mehmood, M.A. 2018. Evaluating the bioenergy potential of Chinese Liquor-industry waste through pyrolysis, thermogravimetric, kinetics and evolved gas analyses. Energy Conversion and Management, 163, 13-21.
    Ye, J., Liu, M., He, M., Ye, Y., Huang, J. 2019. Illustrating and Enhancing the Biosynthesis of Astaxanthin and Docosahexaenoic Acid in Aurantiochytrium sp. SK4. Marine Drugs, 17(1).
    Yeh, M.S., Wei, Y.H., Chang, J.S. 2005. Enhanced Production of Surfactin from Bacillussubtilis by addition of solid carriers. Biotechnology progress, 21(4), 1329-1334.
    Yen, S.W., Nagarajan, D., Chen, W.H., Lee, D.J., Chang, J.S. 2023. Fermentative production of astaxanthin from sorghum distillery residue by an indigenous Aurantiochytrium sp. CJ6 strain using a continuous-feeding fed-batch process. Bioresource Technology, 376, 128817.
    Yin, F.-W., Zhan, C.-T., Huang, J., Sun, X.-L., Yin, L.-F., Zheng, W.-L., Luo, X., Zhang, Y.-Y., Fu, Y.-Q. 2023. Efficient Co-production of Docosahexaenoic Acid Oil and Carotenoids in Aurantiochytrium sp. Using a Light Intensity Gradient Strategy. Applied Biochemistry and Biotechnology, 195(1), 623-638.
    Zhang, D.H., Lee, Y.K. 1997. Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. Journal of Applied Phycology, 9, 459–463.
    Zhang, D.H., Lee, Y.K., Ng, M.L., Phang, S.M. 1997. Composition and accumulation of secondary carotenoids in Chlorococcum sp. Journal of Applied Phycology, 9, 147–155.
    Zhang, J., Fan, C., Zang, L. 2017. Improvement of hydrogen production from glucose by ferrous iron and biochar. Bioresource Technology, 245(Pt A), 98-105.
    朱瑋華. 2018. 雲芝發酵高粱酒糟作為肉食性魚抗寒之機能性飼料-以海鱺為模式. in: 食品科學系, Vol. 碩士, 國立臺灣海洋大學. 基隆市, pp. 115.
    廖婕妤. 2015. 高梁酒糟經酸水解後單糖分析及木糖產量的探討. in: 食品科學系碩士班, Vol. 碩士, 國立宜蘭大學. 宜蘭縣, pp. 59.
    簡慈萱. 2020. 高粱酒糟基質預處理暨通氣對靜置培養 Komagataeibacter rhaeticus 生產細菌纖維素之影響. in: 食品暨應用生物科技學系所, Vol. 碩士, 國立中興大學. 台中市, pp. 86.

    無法下載圖示 校內:2028-11-28公開
    校外:2028-11-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE