| 研究生: |
徐國欽 Hsu, Kuo-Chin |
|---|---|
| 論文名稱: |
II-VI族衍生物材料(SnS, CuInSe2, Cu2ZnSnS4)之新型合成及其特性分析 Novel synthesis and characterization of II-VI group derivative materials, including SnS, CuInSe2, and Cu2ZnSnS4 |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 二六族 、水熱法 、固態合成法 、放電紡絲法 、吸光材料 |
| 外文關鍵詞: | II-VI group, hydrothermal process, solid state reaction, electrospinning process, absorption materials |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之目的在於II-VI族衍生物太陽電池吸收材料之開發,包含了硫化亞錫 (SnS),二硒化銅銦 (CuInSe2, CIS) 與硫化銅錫鋅 (Cu2ZnSnS4, CZTS)。本研究採用非真空製程,包含水熱法、低溫固態合成法與放電紡絲法來製備II-VI族材料。在水熱法的自組裝環境下,我們可以控制適當的反應環境如: 反應時間、反應溫度以及前驅物的濃度來獲得純度高且單一相的P型Cu2ZnSnS4粉體。薄膜CuInSe2則使用CuSe與InSe二元前驅物在低溫固態法的合成下獲得。所製備出來的P型CuInSe2 薄膜有良好的熱穩定性與結晶性以及擁有適合用於太陽電池吸收層的能隙值。
在本研究中,我們使用金屬氯化物與硫脲並搭配高分子聚乙烯醇縮丁醛 (polyvinylbutyral) 與醋酸纖維素 (cellulose acetate) 製備出均相的前驅物溶液,再透過放電紡絲法收集得到polyvinylbutyral/SnS與cellulose acetate/CZTS 複合纖維,並經過鍛燒可獲得SnS與CZTS的中孔纖維。SnS與CZTS的中孔纖維經由儀器檢測為P型半導體、單一相、高結晶性且良好的化學組成比。SnS與CZTS的中孔纖維能隙值亦適合使用於薄膜太陽電池的吸光層。
綜上所述,我們製備出多種類的高品質薄膜吸光材料並提供一些簡易、低成本且低環境汙染的非真空製程應用於薄膜太陽能電池。
The objective of this thesis is the synthesis and characterization of the II-VI group solar absorption materials, including SnS, CuInSe2 (CIS), and Cu2ZnSnS4 (CZTS). We used a hydrothermal, solid state reaction, and electrospinning processes to prepare these absorption materials. In the hydrothermal process, we optimized the experimental condition, such as reaction time, reaction temperature and concentration of the reactant, to obtain optimum high purity single phase CZTS powders with P-type conductivity. In the low temperature solid state reaction, CuInSe2 could be prepared by using CuSe and InSe binary precursors via solid state reaction. The as-prepared CuInSe2 films have good thermal stability, suitable bandgap value, and a good crystallinity chalcopyrite structure with P-type conductivity. The results can provide a shortcut to producing CIS thin films for absorption layers.
In addition, polyvinylbutyral/SnS (PVB/SnS) and cellulose acetate/CZTS (CA/CZTS) composite fibers were synthesized through a relatively simple electrospinning process. In a typical synthesis, SnCl2·2H2O, CH4N2S, and PVB were dissolved in ethanol under magnetic stirring at room temperature for 2h to obtain a homogenous precursor of PVB/SnS composites. CuCl, ZnCl, SnCl4·5H2O, CH4N2S, and CA were also dissolved in acetone and DI water under magnetic stirring at room temperature for 2h to obtain a homogenous precursor of CA/CZTS composites. Homogeneous precursor solutions of PVB/SnS and CA/CZTS composites were prepared and used immediately for the electrospinning process. Finally, PVB/SnS and CA/CZTS composites fibers were obtained, then transferred to a combustion boat, and calcined in the N2 atmosphere to obtain SnS and CZTS mesoporous fibers. The SnS and CZTS mesoporous fibers were then characterized using X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis, and transmission electron microscopy. The optical and electrical properties of SnS and CZTS mesoporous fibers were also recorded by UV-Vis absorption spectroscopy and Hall effect measurements, respectively. The results showed that the synthesized SnS and CZTS mesoporous fibers had a p-type conductivity, single phase, high crystallinity and a stoichiometric composition with suitable band gap value. The as-prepared SnS and CZTS mesoporous fibers are thus a suitable material to achieve visible light absorption in a thin film solar cell.
As described above, we plan to fabricate high quality absorption materials and provide a simple, low-cost, and low environmental pollution procedure for thin film solar cells by using non-vacuum process.
1. O. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology”, Renewable and Sustainable Energy Reviews, 39, 748, 2014.
2. S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice Hall, New York, 2001.
3. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, 25, 676, 1954.
4. National Renewable Energy Laboratory, http://www.nrel.gov/ (accessed Apr. 1, 2016).
5. T. Surek, “Crystal growth and materials research in photovoltaics: progress and challenges”, Journal of Crystal Growth, 275, 292, 2005.
6. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, Journal of Applied Physics, 32, 510, 1961.
7. I. M. Dharmadasa, A. P. Samantilleke, N. B. Chaure, and J. Young, “New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model”, Semiconductor Science and Technology, 17, 1238, 2002.
8. A. McEvoy, L. Castaner, and T. Markvart, “Solar cells: materials, manufacture and operation”, Academic Press. 2012.
9. K. Vipul, K. K. Patel, S. J. Patel, and D. V. Shah, “Synthesis and characterization of copper zinc tin sulphide (CZTS) compound for absorber material in solar-cells”, Journal of Crystal Growth, 362, 174, 2013.
10. J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors”, Materials Research Bulletin, 5, 721, 1970.
11. Y. Kawano, J. Chantana, and T. Minemoto, “Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance”, Current Applied Physics, 15, 897, 2015.
12. S. Agilan, D. Mangalaraj, S. K. Narayandass, S. Velumani, and A. Ignatiev, “Structural and optical characterization of CuInSe2 films deposited by hot wall vacuum evaporation method”, Vacuum, 81, 813, 2007.
13. Z. Zakaria, P. Chelvanathan, M. J. Rashid, M. Akhtaruzzaman, M. M. Alam, Z. A. Al-Othman, A. Alamoud, K. Sopian, and N. Amin, “Effects of sulfurization temperature on Cu2ZnSnS4 thin film deposited by single source thermal evaporation method”, Japanese Journal of Applied Physics, 54, 08KC18, 2015.
14. R. E. Banai, H. Lee, M. A. Motyka, R. Chandrasekharan, N. J. Podraza, J. R. S. Brownson, and M. W. Horn, “Optical Properties of Sputtered SnS Thin Films for Photovoltaic Absorbers”, IEEE Journal of Photovoltaics, 3, 1084, 2013.
15. J. Muller, J. Nowoczin, and H. Schmitt, “Composition, structure and optical properties of sputtered thin films of CuInSe2”, Thin Solid Films, 496, 364, 2006.
16. R. Nakamura, K. Tanaka, H. Uchiki, K. Jimbo, T. Washio, and H. Katagiri, “Cu2ZnSnS4 thin film deposited by sputtering with Cu2ZnSnS4 compound target”, Japanese Journal of Applied Physics 53, 02BC10, 2014.
17. F. Y. Ran, Z. Xiao, H. Hiramatsu, H. Hosono, and T. Kamiya, “Growth of high-quality SnS epitaxial films by H2S flow pulsed laser deposition”, Applied Physics Letters, 104, 072106, 2014.
18. S. Kuranouchi and A. Yosbida, “Annealing effects of CuInSe2 films prepared by pulsed laser deposition”, Thin Solid Films, 343, 123, 1999.
19. S. M. Pawar, A. V. Moholkar, I. K. Kim, S. W. Shin, J. H. Moon, J. I. Rhee, and J. H. Kim, “Effect of laser incident energy on the structural, morphological and optical properties of Cu2ZnSnS4 (CZTS) thin films”, Current Applied Physics, 10, 565, 2010.
20. W. Wang, K. K. Leung, W. K. Fong, S. F. Wang, Y. Y. Hui, S. P. Lau, Z. Chen, L. J. Shi, C. B. Cao, and C. Surya, “Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer”, Journal of Applied Physics, 111, 093520, 2012.
21. K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy”, Journal of Applied Physics, 86, 4354, 1999.
22. S. Thirua, M. Asakawa, K. Honda, A. Kawaharazuka, A. Tackeuchi, T. Makimoto, and Y. Horikoshi, “Study of single crystal CuInSe2 thin films and CuGaSe2/CuInSe2 single quantum well grown by molecular beam epitaxy”, Journal of Crystal Growth, 425, 203, 2015.
23. A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy”, Progress in Solid State Chemistry, 10, 157, 1975.
24. M. Z. Iqbal, F. Wang, M. Y. Rafique, S. Ali, M. H. Farooq, and M. Ellahi, “Hydrothermal synthesis, characterization and hydrogen storage of SnS nanorods”, Materials Letters, 106, 33, 2013.
25. S. Sugan, K. Baskar, and R. Dhanasekaran, “Hydrothermal synthesis of chalcopyrite CuInS2, CuInSe2 and CuInTe2 nanocubes and their characterization”, Current Applied Physics, 14, 1416, 2014.
26. C. Wang, C. Cheng, Y. Cao, W. Fang, L. Zhao, and X. Xu, “Synthesis of Cu2ZnSnS4 Nanocrystallines by a Hydrothermal Route”, Japanese Journal of Applied Physics, 50, 065003, 2011.
27. M. Kul, “Electrodeposited SnS film for photovoltaic applications”, Vacuum, 107, 213, 2014.
28. S. H. Kang, Y. K. Kim, D. S. Choi, and Y. E. Sung, “Characterization of electrodeposited CuInSe2 (CIS) film”, Electrochimica Acta, 51, 4433, 2006.
29. E. M. Mkawi, K. Ibrahim, M. K. M. Ali, K. M. A. Saron, M. A. Farrukh, and N. K. Allam, “Influence of substrate temperature on the properties of electrodeposited kesterite Cu2ZnSnS4 (CZTS) thin films for photovoltaic applications”, Journal of Materials Science: Materials in Electronics, 26, 222, 2015.
30. B. Thangaraju and P. Kaliannan, “Spray pyrolytic deposition and characterization of SnS and SnS2 thin films”, Journal of Physics D: Applied Physics, 33, 1054, 2000.
31. A. A. Aki and H. H. Afify, “Growth, microstructure, optical and electrical properties of sprayed CuInSe2 polycrystalline films”, Materials Research Bulletin, 43, 1539, 2008.
32. S. M. Bhosale, M. P. Suryawanshi, M. A. Gaikwad, P. N. Bhosale, J. H. Kim, and A. V. Moholkar, “Influence of growth temperatures on the properties of photoactive CZTS thin films using a spray pyrolysis technique”, Materials Letters, 129, 153, 2014.
33. C. H. Mu, Y. Q. Song, X. N. Wang, and P. Wu, “Kesterite Cu2ZnSnS4 compounds via electrospinning: A facile route to mesoporous fibers and dense films”, Journal of Alloys and Compounds, 645, 429, 2015.
34. Y. Bi, C. H. Mu, and Y. Q. Song, “Morphology and properties evolution of kesterite Cu2ZnSnS4 microfibers synthesized via electrospinning method”, Journal of Porous Materials, 22, 1503, 2015.
35. X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibous membranes for highly sensitive optical sensors”, Nano Letters, 2, 1273, 2002.
36. J. T. McCann, D. Li, and Y. Xia, “Electrospinning of nanofibers with core-sheath, hollow, or porous structure”, Journal of Materials Chemistry, 15, 735, 2005.
37. L. Ehm, K. Knorr, P. Dera, A. Krimmel, P. Bouvier, and M. Mezouar, “Pressure-induced structural phase transition in the IV–VI semiconductor SnS”, Journal of Physics: Condensed Matter, 16, 3545, 2004.
38. M. Ichimura, K. Takeuchi, Y. Ono, and E. Arai, “Electrochemical deposition of SnS thin films”, Thin Solid Films, 361, 98, 2000.
39. K. Takeuchi, M. Ichimura, E. Arai, and Y. Yamazaki, “SnS thin films fabricated by pulsed and normal electrochemical deposition”, Solar Energy Materials and Solar Cells, 75, 427, 2003.
40. M. Ristov, G. Sinadinovski, M. Mitreski, and M. Ristova, “Photovoltaic cells based on chemically deposited p-type SnS”, Solar Energy Materials and Solar Cells, 69, 17, 2001.
41. B. Ghosh, M. Das, P. Banerjee, and S. Das, “Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications”, Solar Energy Materials and Solar Cells, 92, 1099, 2008.
42. K. T. Ramakrishna Reddy, P. Purandhara Reddy, P. K. Datta, and R. W. Miles, “Formation of polycrystalline SnS layers by a two-step process”, Thin Solid Films, 403, 116, 2002.
43. W. Albers, C. Haas, H. J. Vink, and J. D. Wasscher, “Investigations on SnS”, Journal of Applied Physics, 32, 2220, 1961.
44. R. C. Sharma and Y. A. Chang, “The S-Sn (Sulfur-Tin) system”, Bulletin of Alloy Phase Diagrams, 7, 273, 1986.
45. H. Zhang, C. Hu, X. Wang, Y. Xi, and X. Li, “Synthesis and photosensitivity of SnS nanobelts”, Journal of Alloys and Compounds, 513, 1, 2012.
46. F. Alam and V. Dutta, “Tin sulfide (SnS) nanostructured films deposited by continuous spray pyrolysis (CoSP) technique for dye-sensitized solar cells applications”, Applied Surface Science, 358, 491, 2015.
47. J. Müller, J. Nowoczin, and H. Schmitt, “Composition, structure and optical properties of sputtered thin films of CuInSe2”, Materials Chemistry and Physics, 100, 152, 2006.
48. A. Rockett and R. W. Birkmire, “CuInSe2 for photovoltaic applications”, Journal of Applied Physics, 70, 81, 1991.
49. Y. D. Tembhurkar and J. P. Hirde, “Structural, optical and electrical properties of spray pyrolytically deposited films of copper indium diselenide”, Thin Solid Films, 215, 65, 1992.
50. G. K. Padam, G. L. Malhotra, and S. K. Gupta, “Study of intrinsic defects in vacuum/air annealed CuInSe2”, Solar Energy Materials, 22, 301, 1991.
51. J. W. Chu and D. Haneman, “Degradation processes in polycrystalline copper indium diselenide photoelectrochemical cells”, Solar Cells, 31, 197, 1991.
52. A. Luque and S. Hegedus, “Handbook of photovoltaic science and engineering”, John Wiley & Sons, 2011.
53. T. Gödecke, T. Haalboom, and F. Ernst, “Phase equilibria of Cu-In-Se. I. Stable states and nonequilibrium states of the In2Se3-Cu2Se subsystem”, Zeitschrift für Metallkunde, 91, 622, 2000.
54. L. L. Kerr, S. S. Li, S. W. Johnston, T. J. Anderson, O. D. Crisalle, W. K. Kim, J. Abushama, and R. N. Noufi, “Investigation of defect properties in Cu(In,Ga)Se2 solar cells by deep-level transient spectroscopy”, Solid-State Electronics, 48, 1579, 2004.
55. H. Neumann, “Optical properties and electronic band structure of CuInSe2”, Solar Cells, 16, 317, 1986.
56. S. Wei and A. Zunger, “Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals”, Applied Physics Letters, 72, 2011, 1998.
57. B. Li, Y. Xie, J. Huang, and Y. Qian, “Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles”, Advanced Materials, 11, 1456, 1999.
58. F. Hergert, R. Hock, A. Weber, M. Purwins, J. Palm, and V. Probst, “In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction-The impact of Gallium, Sodium and Selenium excess”, Journal of Physics and Chemistry of Solids, 66, 1903, 2005.
59. S. Kim, W. K. Kim, R. M. Kaczynski, R. D. Acher, S. Yoon, T. J. Anderson, O. D. Crisalle, E. A. Payzant, and S. S. Li, “Reaction kinetics of CuInSe2 thin films grown from bilayer InSe/CuSe precursors”, Journal of Vacuum Science & Technology A, 23, 310, 2005.
60. J. Koo, C. W. Kim, C. H. Jeong, and W. K. Kim, “Rapid synthesis of CuInSe2 from sputter-deposited bilayer In2Se3/Cu2Se precursors”, Thin Solid Films, 582, 79, 2015.
61. S. R. Hall, J. T. Szymanski, and J. M. Stewart, “Kesterite, Cu2(Zn, Fe)SnS4 and stannite, Cu2(Fe, Zn)SnS4 structural similar but distinct minerals”, Canadian Mineralogist, 16, 131, 1978.
62. Mincryst information card-KESTERITE (Card No. 2333). http://database.iem.ac.ru/mincryst/s_carta.php?KESTERITE+2333 (accessed Apr. 1, 2016).
63. M. Ichimura and Y. Nakashima, “Analysis of atomic and electronic structures of Cu2ZnSnS4 based on first-principle calculation”, Japanese Journal of Applied Physics, 48, 090202, 2009.
64. E. A. Lund, H. Du, W. M. Hlaing OO, G. Teeter, and M. A. Scarpulla, “Investigation of combinatorial coevaporated thin film Cu2ZnSnS4 (II): Beneficial cation arrangement in Cu-rich growth”, Journal of Applied Physics, 115, 173503, 2014.
65. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, and Q. Qiao, “Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells”, Energy & Environmental Science, 8, 3134, 2015.
66. T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D. B. Mitzi, “Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells”, Advanced Energy Materials, 3, 34, 2013.
67. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell”, Solar Energy Materials and Solar Cells, 95, 1421, 2011.
68. W. Ki and H. W. Hillhouse, “Earth-Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non-Toxic Solvent”, Advanced Energy Materials, 1, 732, 2011.
69. R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, and D. B. Mitzi, “Band alignment at the Cu2ZnSn(SxSe1−x)4/CdS interface”, Applied Physics Letters, 98, 253502, 2011.
70. J. He, L. Sun, S. Chen, Y. Chen, P. Yang, and J. Chu, “Composition dependence of structure and optical properties of Cu2ZnSn(S,Se)4 solid solutions: An experimental study”, Journal of Alloys and Compounds, 511, 129, 2012.
71. H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, and Y. Zhang, “Tunable band gap Cu2ZnSnS4xSe4(1−x) nanocrystals: experimental and first-principles calculations”, CrystEngComm, 13, 2222, 2011.
72. S. Levcenco, D. Dumcenco, Y. P. Wang, Y. S. Huang, C. H. Ho, E. Arushanov, V. Tezlevan, and K. K. Tiong, “Influence of anionic substitution on the electrolyte electroreflectance study of band edge transitions in single crystal Cu2ZnSn(SxSe1−x)4 solid solutions”, Optical Materials, 34, 1362, 2012.
73. S. M. Bhosale, M. P. Suryawanshi, J. H. Kim, and A. V. Moholkar, “Influence of copper concentration on sprayed CZTS thin films deposited at high temperature”, Ceramics International, 41, 8299, 2015.
74. A. Walsh, S. Chen, S. H. Wei, and X. G. Gong, “Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4”, Advanced Energy Materials, 2, 400, 2012.
75. R. Jaramillo, V. Steinmann, C. Yang, K. Hartman, R. Chakraborty, J. R. Poindexter, M. L. Castillo, R. Gordon, and T. Buonassisi, “Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition”, Journal of Visualized Experiments, 99, e52705, 2015.
76. M. P. Paranthaman, W. Wong-Ng, and R. N. Bhattacharya, “Semiconductor Materials for Solar Photovoltaic Cells”, Springer, Germany, 218, 2015.
77. K. Ito and T. Nakazawa, “Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films”, Japanese Journal of Applied Physics, 27, 2094, 1988.
78. T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, and H. Ogawa, “Preparation of Cu2ZnSnS4 thin films by hybrid sputtering”, Journal of Physics and Chemistry of Solids, 66, 1978, 2005.
79. K. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. Maw, H. Araki, K. Oishi, and H. Katagiri, “Cu2ZnSnS4-type thin film solar cells using abundant materials”, Thin Solid Films, 515, 5997, 2007.
80. K. H. Park, K. Jang, S. Kim, H. J. Kim, and S. U. Son, “Phase-controlled one-dimensional shape evolution of InSe nanocrystals”, Journal of the American Chemical Society, 128, 14780, 2006.
81. H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells”, Thin Solid Films, 517, 2455, 2009.
82. K. T. Ramakrishna Reddy, N. Koteswara Reddy, and R. W. Miles, “Photovoltaic properties of SnS based solar cells”, Solar Energy Materials and Solar Cells, 90, 3041, 2006.
83. M. Sharon and K. Basavaswaran, “Photoelectrochemical studies on p-SnSe electrodes”, Solar Cells, 20, 323, 1987.
84. D. Li, Y. Wang, and Y. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays”, Nano Letters, 3, 1167, 2003.
85. R. L. Liu, H. Y. Ye, X. P. Xiong, and H. Q. Liu, “Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property”, Materials Chemistry and Physics, 121, 432, 2010.
86. W. Wang, X. F. Lu, Z. Y. Li, J. Y. Lei. X. C. Liu, Z. J. Wang, H. N. Zhang, and C. Wang, “One-dimensional polyelectrolyte/polymeric semiconductor core/shell structure: sulfonated poly(arylene ether ketone)/polyaniline nanofibers for organic field-effect transistors”, Advanced Materials, 23, 5109, 2011.
87. T. S. He, Z. F. Zhou, W. B. Xu, Y. Cao, Z. F. Shi, and W. P. Pan, “Visible-light photocatalytic activity of semiconductor composites supported by electrospun fiber”, Composites Science and Technology, 70, 1469, 2010.
88. S. Bhattacharjee, M. K. Paria, and H. S. Maiti, “Polyvinyl butyral as a dispersant for barium titanate in a non-aqueous suspension”, Journal of Materials Science, 28, 6490, 1993.
89. L. Mrkvičková, J. Daňhelka, and S. Pokorný, “Characterization of commercial polyvinylbutyral by gel permeation chromatography”, Journal of Applied Polymer Science, 29, 803, 1984.
90. P. Ruenraroengsak and A. T. Florence, “The diffusion of latex nanospheres and the effective (microscopic) viscosity of HPMC gels”, International Journal of Pharmaceutics, 298, 361, 2005.
91. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of Applied Physics, 87, 4531, 2000.
92. D. Li and Y. Xia, “Fabrication of Titania Nanofibers by Electrospinning”, Nano Letters, 3, 555, 2003.
93. L. Wannatong, A. Sirivat, and P. Supaphol, “Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene”, Polymer International, 53, 1851, 2004.
94. H. Wu and W. Pan, “Preparation of Zinc Oxide Nanofibers by Electrospinning”, Journal of the American Ceramic Society, 89, 699, 2006.
95. P. K. Baumgartyen, “Electrostatic spinning of acrylic microfibers”, Journal of Colloid and Interface Science, 36, 71, 1971.
96. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, and N. H. Sung, “Influence of a mixing solvent with tetrahydrofuran and N, N-dimethylformamide on electrospun poly (vinyl chloride) nonwoven mats”, Journal of Polymer Science Part B: Polymer Physics, 40, 2259, 2002.
97. H. Fong, I. Chun, and D. H. Reneker, “Beaded nanofibers formed during electrospinning”, Polymer, 40, 4585, 1999.
98. H. Liu and Y. L. Hsieh, “Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate”, Journal of Polymer Science Part B: Polymer Physics, 40, 2119, 2002.
99. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes”, Polymer, 43, 4403, 2002.
100. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, “The change of bead morphology formed on electrospun polystyrene fibers”, Polymer, 44, 4029, 2003.
101. K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W. Choi, “Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends”, Journal of Polymer Science Part B: Polymer Physics, 41, 1256, 2003.
102. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, “Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers”, Macromolecules, 35, 8456, 2002.
103. M. A. Majeed Khan, S. Kumar, M. Alhoshan, and A. S. Al Dwayyan, “Spray pyrolysed Cu2ZnSnS4 absorbing layer: A potential candidate for photovoltaic applications”, Optics & Laser Technology, 49, 196, 2013.
104. K. C. Hsu, J. D. Liao, J. R. Yang, and Y. S. Fu, “Cellulose acetate assisted synthesis and characterization of kesterite quaternary semiconductor Cu2ZnSnS4 mesoporous fibers by an electrospinning process”, CrystEngComm, 15, 4303, 2013.
105. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, “Recommendations for the characterization of porous solids (Technical Report)”, Pure and Applied Chemistry, 66, 1739, 1994.
106. G. Conibeer, M. Green, E. C. Cho, D. König, Y. H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. J. Huang, D. Y. Song, C. Flynn, S. Park, X. J. Hao, and D. Mansfield, “Silicon quantum dot nanostructures for tandem photovoltaic cells”, Thin Solid Films, 516, 6748, 2008.
107. B. Levy, “Photochemistry of nanostructured materials for energy applications”, Journal of Electroceramics, 1, 239, 1997.
108. D. Cahen, J. M. Gilet, C. Schmitz, L. Chernyak, K. Gartsman, and A. Jakubowicz, “Room-temperature, electric field-induced creation of stable devices in CuInSe2 crystals”, Science, 258, 271, 1992.
109. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Progress in Photovoltaics, 16, 235, 2008.
110. W. Liu, Y. Sun, W. Li, C. Li, F. Li, and J. Tian, “Influence of different precursor surface layers on Cu(In1-xGax)Se2 thin film solar cells”, Applied Physics A, 88, 653, 2007.
111. F. Kurdesau, M. Kaelin, V. B. Zalesski, and V. I. Lovalewsky, “In situ resistivity measurements of Cu-In thin films during their selenization”, Journal of Alloys and Compounds, 378, 298, 2004.
112. P. Y. Lin and Y. S. Fu, “Fabrication of CuInSe2 light absorption materials from binary precursors via wet chemical process”, Materials Letters, 75, 65, 2012.
113. H. I. Hsiang, L. H. Lu, Y. L. Chang, D. Ray, and F. S. Yen, “CuInSe2 nano-crystallite reaction kinetics using solid state reaction from Cu2Se and In2Se3 powders”, Journal of Alloys and Compounds, 509, 6950, 2011.
114. S. Kim, W. K. Kim, R. M. Kaczynski, R. D. Acher, S. Yoon, T. J. Anderson, and O. D. Crisalle, “Reaction kinetics of CuInSe2 thin films grown from bilayer InSe/CuSe precursors”, Journal of Vacuum Science & Technology A, 23, 310, 2005.
115. J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko, “CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction”, Journal of Applied Physics, 87, 3683, 2000.
116. Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells”, Nano Letters, 8, 2982, 2008.
117. H. S. Soliman, M. M. El-Nahas, O. Jamjoum, and K. A. Mady, “Optical properties of CulnSe2 thin films”, Journal of Materials Science, 23, 4071, 1988.
118. V. V. Poborchi, A. V. Kolobov, and K. Tanaka, “An in situ Raman study of polarization-dependent photocrystallization in amorphous selenium films”, Applied Physics Letters, 72, 1167, 1998.
119. P. Nagels, E. Sleeckx, R. Callaerts, and L. Tichy, “Structural and optical properties of amorphous selenium prepared by plasma-enhanced CVD”, Solid State Communications, 94, 49, 1995.
120. M. Ishii, K. Shibata, and H. Nozaki, “Anion distributions and phase transitions in CuS1-xSex (x = 0-1) studied by Raman spectroscopy”, Journal of Solid State Chemistry, 105, 504, 1993.
121. M. Krunks, T. Leskelä, R. Mannonen, and L. Niinistö, “Thermal Decomposition of Copper(I) Thiocarbamide Chloride Hemihydrate”, Journal of Thermal Analysis and Calorimetry, 53, 355, 1998.
122. N. Kamoun, H. Bouzouita, and B. Rezig, “Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique”, Thin Solid Films, 515, 5949, 2007.
123. R. Schurr, A. Holzing, S. Jost, R. Hock, T. Voβ, J. Schulze, A. Kirbs, A. Ennaoui, M. Lux-Steiner, A. Weber, I. Kötschau, and H. W. Schock, “The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors”, Thin Solid Films, 517, 2465, 2009.
124. Y. Li, R. Dillert, and D. Bahnemann, “Preparation of porous CdIn2S4 photocatalyst films by hydrothermal crystal growth at solid/liquid/gas interfaces”, Thin Solid Films, 516, 4988, 2008.
125. A. Rabeneau, “The Role of Hydrothermal Synthesis in Preparative Chemistry”, Angewandte Chemie International Edition in English, 24, 1026, 1985.
126. Y. L. Zhou, W. H. Zhou, Y. F. Du, M. Li, and S. X. Wu, “Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method”, Materials Letters, 65, 1535, 2011.
127. C. Zou, L. J. Zhang, D. S. Lin, Y. Yang, Q. Li, X. J. Xu, X. A. Chen, and S. M. Huang, “Facile synthesis of Cu2ZnSnS4 nanocrystals”, CrystEngComm, 13, 3310, 2011.
128. M. Gopiraman, K. Fujimori, K. Zeeshan, B. S. Kim, and I. S. Kim, “Structural and mechanical properties cellulose acetate/graphene hybrid nanofibers: Spectroscopic investigations”, eXPRESS Polymer Letters, 7, 554, 2013.
129. S. Ali, Z. Khatri, K. W. Oh, I. S. Kim, and S. H. Kim, “Zein/cellulose acetate hybrid nanofibers: Electrospinning and characterization”, Macromolecular Research, 22, 971, 2014.
130. H. Park, Y. H. Hwang, and B. S. Bae, “Sol–gel processed Cu2ZnSnS4 thin films for a photovoltaic absorber layer without sulfurization”, Journal of Sol-Gel Science and Technology, 65, 23, 2013.
校內:2021-08-22公開