| 研究生: |
方彣綺 Fang, Wen-Chi |
|---|---|
| 論文名稱: |
透過適應性演化增強克魯維乳酸酵母菌的發酵作用能力 Improve the fermentation capability of Kluyveromyces lactis through adaptive evolution |
| 指導教授: |
宋皇模
Sung, Huang-Mo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | Kluyveromyces lactis 、Saccharomyces cerevisiae 、六碳糖轉運蛋白質 、發酵作用能力 |
| 外文關鍵詞: | Kluyveromyces lactis, Saccharomyces cerevisiae, hexose transporter genes, fermentation capability |
| 相關次數: | 點閱:66 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有些酵母菌在具有高濃度葡萄糖的條件下,即使氧氣充足,仍以發酵作用作為糖代謝主要的模式,這些酵母菌被稱為Crabtree positive酵母菌 (例如: Saccharomyces cerevisiae) ;而克魯維乳酸酵母菌 (Kluyveromyces lactis) 則是Crabtree negative的酵母菌,以呼吸作用作為主要的糖代謝模式。研究指出,Crabtree positive酵母菌的祖先最初主要依靠呼吸作用進行糖代謝作用模式,為適應環境而演化成主要以發酵作用的糖代謝模式。為了探究酵母菌如何轉換糖代謝模式,本實驗室已利用同源重組的方式,將來自S. cerevisiae的糖運輸蛋白質基因Hxt置入K. lactis (KB101) 中,藉此探討在增強攝取葡萄糖能力的狀況下對於K. lactis生長的影響。結果顯示在大量表達Hxt5或Hxt6基因的情況下能有效提升K. lactis在呼吸作用下的生長速率。因此本研究透過適應性演化 (adaptive evolution) 的方式篩選出發酵作用能力比較強的K. lactis 酵母菌,以了解增強葡萄糖攝取能力的狀況下對K. lactis以發酵作用作為生長條件的影響。本研究透過持續將K. lactis酵母菌菌株培養在無法進行呼吸作用的情況下,使菌株產生適應性演化,以觀察K. lactis酵母菌進行發酵作用的變化狀態。我已繼代培養共200次,並測定第0、50、100、150及200次繼代培養後的菌株以發酵作用作為主要糖代謝路徑的生長曲線,以觀察葡萄糖運輸能力對K. lactis酵母菌生長變化的影響。本研究在繼代培養200次後的適應性演化實驗中,也得到18個生長快速的 KB101 (Hxt5) 單一菌落; 11個生長快速的 KB101 (Hxt6) 單一菌落。我從KB101 (Hxt5) 及KB101 (Hxt6) 品系中各挑選5個菌株進行生長曲線測定,實驗結果顯示適應性演化中出現的生長快速菌株其發酵作用下的生長速率與未經適應性演化的原始菌株相比皆顯著提升。然而某些適應性演化後的整體族群其生長速率與未經適應性演化的原始菌株相比皆呈現下降現象。後續觀察發現隨著適應性演化次數的增加,K. lactis酵母菌細胞會逐漸出現絮凝現象,以測量OD600的方式來呈現菌株生長速率就會產生誤判情況,推測不同繼代培養次數所造成的細胞聚集程度並不相同,因此造成菌液中的懸浮菌數不易被精準估計出來。在未來實驗設計中,可以設計其他方式來探討生長速率的改變,並可以透過RNA定序的方式來了解這些經適應性演化後發酵作用能力變強的K. lactis酵母菌有哪些基因的表現量受到影響。
Under high glucose condition, some yeasts, such as Saccharomyces cerevisiae, utilize fermentation as their primary metabolic process even if there is sufficient oxygen. These yeasts are known as Crabtree positive yeasts. In contrast, Kluyveromyces lactis is a Crabtree negative yeast, primarily relying on respiration process for sugar metabolism. Previous researches suggest that the ancestors of Crabtree positive yeasts might initially depended on respiration for sugar metabolism and later evolved to adopt fermentation under high level of glucose conditions even if there is sufficient oxygen. Our laboratory previously introduced several hexose transporter genes (Hxts) of S. cerevisiae into K. lactis (KB101) to explore the impact of enhanced glucose uptake capability on the growth of K. lactis. Our results showed that overexpressing Hxt5 or Hxt6 genes significantly improved the growth rate of K. lactis. I now aim to study the fermentation capabilities of these K. lactis strains. In this study, K. lactis was grown on media with antimycin A to inhibit the respiration capability and selected for higher fermentation capability of K. lactis for a long period of time. In this study I found 18 fast-growing strains of KB101 (Hxt5), and 11 fast-growing strains of KB101 (Hxt6). I tested the growth rate of 5 fast growth KB101 (Hxt5) strains and 5 fast growth KB101 (Hxt6) strains and found that these strains do grow fast than the parental strains.
潘冠吾,(2022)。大量表達六碳糖轉運蛋白質對於克魯維乳酸酵母菌生長之研究。國立成功大學生命科學研究所碩士學位論文。取自https://hdl.handle.net/11296/hpfpt4
Abd-Elsalam, K. A. (2003). Bioinformatic tools and guideline for PCR primer design. african Journal of biotechnology, 2(5), 91-95.
Abdelrahman, E., Takatori, K., Matsuda, Y., Tsukada, M., & Kirino, F. (2018). Fungicidal Effects of Ultraviolet Light (254 nm) Irradiation on Contaminated Museum Packing and Storing Materials. Biocontrol Science, 23(4), 177-186.
Al-Saad, L. A., & Al-Zaalan, A. R. (2019). Evaluating the efficiency of ethanol precipitation method in purification of gDNA and PCR product. Basrah Journal of Agricultural Sciences, 32, 276-281.
Apte, A., & Daniel, S. (2009). PCR primer design. Cold Spring Harbor Protocols, 2009(3), pdb. ip65.
Ata, Ö., Rebnegger, C., Tatto, N. E., Valli, M., Mairinger, T., Hann, S., Steiger, M. G., Çalık, P., & Mattanovich, D. (2018). A single Gal4-like transcription factor activates the Crabtree effect in Komagataella phaffii. Nature communications, 9(1), 4911.
Bachmann, L. M., & Miller, W. G. (2020). Spectrophotometry. In Contemporary Practice in Clinical Chemistry (pp. 119-133). Elsevier.
Bass, J. I. F., Reece-Hoyes, J. S., & Walhout, A. J. (2016). Zymolyase-treatment and polymerase chain reaction amplification from genomic and plasmid templates from yeast. Cold Spring Harbor Protocols, 2016(12), pdb. prot088971.
Benatuil, L., Perez, J. M., Belk, J., & Hsieh, C.-M. (2010). An improved yeast transformation method for the generation of very large human antibody libraries. Protein Engineering, Design & Selection, 23(4), 155-159.
Bennett, A. F., & Hughes, B. S. (2009). Microbial experimental evolution. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 297(1), R17-R25.
Bernal, V., González-Veracruz, M., Cánovas, M., & Iborra, J. L. (2007). Plasmid maintenance and physiology of a genetically engineered Escherichia coli strain during continuous L-carnitine production. Biotechnology Letters, 29, 1549-1556.
Bonekamp, F. J., & Oosterom, J. (1994). On the safety of Kluyveromyces lactis-a review.
Bony, M., Barre, P., & Blondin, B. (1998). Distribution of the flocculation protein, Flop, at the cell surface during yeast growth: the availability of Flop determines the flocculation level. Yeast, 14(1), 25-35.
Brückner, S., & Mösch, H.-U. (2012). Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 36(1), 25-58.
Brown, J. C., & Lindquist, S. (2009). A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes & Development, 23(19), 2320-2332.
Brown, T. A. (2020). Gene cloning and DNA analysis: an introduction. John Wiley & Sons.
Cabrera, E., Welch, L., Robinson, M., Sturgeon, C., Crow, M., & Segarra, V. (2020). Cryopreservation and the freeze–thaw stress response in yeast. Genes, 11 (8), 835. In.
Cardinali, G., Bolano, A., & Martini, A. (2001). A DNA extraction and purification method for several yeast genera. Annals of microbiology, 51(1), 121-130.
Chuzel, L., Ganatra, M. B., Schermerhorn, K. M., Gardner, A. F., Anton, B. P., & Taron, C. H. (2017). Complete genome sequence of Kluyveromyces lactis strain GG799, a common yeast host for heterologous protein expression. Genome Announcements, 5(30), 10.1128/genomea. 00623-00617.
Crabtree, H. G. (1929). Observations on the carbohydrate metabolism of tumours. Biochemical Journal, 23(3), 536.
Dashko, S., Zhou, N., Compagno, C., & Piškur, J. (2014). Why, when, and how did yeast evolve alcoholic fermentation? FEMS yeast research, 14(6), 826-832.
De Deken, R. (1966). The Crabtree effect and its relation to the petite mutation. Microbiology, 44(2), 157-165.
Dickinson, J. R., Salgado, L. E. J., & Hewlins, M. J. (2003). The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. Journal of Biological Chemistry, 278(10), 8028-8034.
Dieffenbach, C., Lowe, T., & Dveksler, G. (1993). General concepts for PCR primer design. PCR methods appl, 3(3), S30-S37.
Divate, N. R., Chen, G.-H., Wang, P.-M., Ou, B.-R., & Chung, Y.-C. (2016). Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose. Bioengineered, 7(6), 445-458.
Fukuhara, H. (2006). Kluyveromyces lactis–a retrospective. FEMS yeast research, 6(3), 323-324.
Gaastra, W., & Hansen, K. (1984). Ligation of DNA with t 4 DNA ligase. Nucleic Acids, 225-230.
García-García, R., Genthon, A., & Lacoste, D. (2019). Linking lineage and population observables in biological branching processes. Physical Review E, 99(4), 042413.
Gey, U., Czupalla, C., Hoflack, B., Rodel, G., & Krause-Buchholz, U. (2008). Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. Journal of Biological Chemistry, 283(15), 9759-9767.
Glover, D. M. (1985). DNA cloning: a practical approach. Volume 1.
González–Siso, M., Freire–Picos, M., Ramil, E., González–Domı́nguez, M., Torres, A. R., & Cerdán, M. (2000). Respirofermentative metabolism in Kluyveromyces lactis:: Insights and perspectives. Enzyme and Microbial Technology, 26(9-10), 699-705.
Heinrich, R., & Schuster, S. (2012). The regulation of cellular systems. Springer Science & Business Media.
Hänni, C., Brousseau, T., Laudet, V., & Stehelin, D. (1995). Isopropanol precipitation removes PCR inhibitors from ancient bone extracts. Nucleic Acids Research, 23(5), 881.
Ishmael, F. T., & Stellato, C. (2008). Principles and applications of polymerase chain reaction: basic science for the practicing physician. Annals of Allergy, Asthma & Immunology, 101(4), 437-443.
Jang, T. H., Park, S. C., Yang, J. H., Kim, J. Y., Seok, J. H., Park, U. S., Choi, C. W., Lee, S. R., & Han, J. (2017). Cryopreservation and its clinical applications. Integrative medicine research, 6(1), 12-18.
Jarosz, D. F., Lancaster, A. K., Brown, J. C., & Lindquist, S. (2014). An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists. Cell, 158(5), 1072-1082.
Johnston, M. (1999). Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends in Genetics, 15(1), 29-33.
Kawai, S., Hashimoto, W., & Murata, K. (2010). Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioengineered bugs, 1(6), 395-403.
Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., & Whitlock, M. C. (2012). Experimental evolution. Trends in Ecology & Evolution, 27(10), 547-560.
Kellis, M., Birren, B. W., & Lander, E. S. (2004). Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature, 428(6983), 617-624.
Koh, C. M. (2013). Storage of bacteria and yeast. Methods Enzymol, 533, 15-21.
Kurtzman, C. P. (2003). Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS yeast research, 4(3), 233-245.
Kurtzman, C. P., & Robnett, C. J. (2003). Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’determined from multigene sequence analyses. FEMS yeast research, 3(4), 417-432.
Lõoke, M., Kristjuhan, K., & Kristjuhan, A. (2011). Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques, 50(5), 325-328.
Lee, P. Y., Costumbrado, J., Hsu, C.-Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. JoVE (Journal of Visualized Experiments)(62), e3923.
Lenski, R. E. (2017). Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. The ISME journal, 11(10), 2181-2194.
Lin-Cereghino, J., Wong, W. W., Xiong, S., Giang, W., Luong, L. T., Vu, J., Johnson, S. D., & Lin-Cereghino, G. P. (2005). Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. BioTechniques, 38(1), 44-48.
Ma, X., Jin, M., Cai, Y., Xia, H., Long, K., Liu, J., Yu, Q., & Yuan, J. (2011). Mitochondrial electron transport chain complex III is required for antimycin A to inhibit autophagy. Chemistry & Biology, 18(11), 1474-1481.
Magaudda, G. (2004). The recovery of biodeteriorated books and archive documents through gamma radiation: some considerations on the results achieved. Journal of Cultural Heritage, 5(1), 113-118.
McDonald, M. J. (2019). Microbial experimental evolution–a proving ground for evolutionary theory and a tool for discovery. EMBO reports, 20(8), e46992.
Meadows, A. L., Hawkins, K. M., Tsegaye, Y., Antipov, E., Kim, Y., Raetz, L., Dahl, R. H., Tai, A., Mahatdejkul-Meadows, T., & Xu, L. (2016). Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 537(7622), 694-697.
Merico, A., Sulo, P., Piškur, J., & Compagno, C. (2007). Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. The FEBS journal, 274(4), 976-989.
Morris, R. (2015). Spectrophotometry. Current Protocols Essential Laboratory Techniques, 11(1), 2.1. 1-2.1. 30.
Noor, E., Eden, E., Milo, R., & Alon, U. (2010). Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Molecular Cell, 39(5), 809-820.
Olivares-Marin, I. K., González-Hernández, J. C., Regalado-Gonzalez, C., & Madrigal-Perez, L. A. (2018). Saccharomyces cerevisiae exponential growth kinetics in batch culture to analyze respiratory and fermentative metabolism. JoVE (Journal of Visualized Experiments)(139), e58192.
Ottaviano, D., Micolonghi, C., Tizzani, L., Lemaire, M., Wésolowski-Louvel, M., De Stefano, M. E., Ranieri, D., & Bianchi, M. M. (2014). Autoregulation of the Kluyveromyces lactis pyruvate decarboxylase gene KlPDC1 involves the regulatory gene RAG3. Microbiology, 160(7), 1369-1378.
Pegg, D. E. (2009). -Principles of Cryopreservation. PreservAtion of HumAn oocytes, 34-46.
Pray, L. (2008). Restriction enzymes. Nature education, 1(1), 38.
Prochazka, E., Poláková, S., Piškur, J., & Sulo, P. (2010). Mitochondrial genome from the facultative anaerobe and petite-positive yeast Dekkera bruxellensis contains the NADH dehydrogenase subunit genes. FEMS yeast research, 10(5), 545-557.
Pronk, J. T., Yde Steensma, H., & Van Dijken, J. P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast, 12(16), 1607-1633.
Ratcliff, W. C., Fankhauser, J. D., Rogers, D. W., Greig, D., & Travisano, M. (2015). Origins of multicellular evolvability in snowflake yeast. Nature communications, 6(1), 6102.
Remigi, P., Masson-Boivin, C., & Rocha, E. P. (2019). Experimental evolution as a tool to investigate natural processes and molecular functions. Trends in microbiology, 27(7), 623-634.
Richards, O. W. (1928). The growth of the yeast Saccharomyces cerevisiae. I. The growth curve, its mathematical analysis, and the effect of temperature on the yeast growth. Annals of Botany, 42(165), 271-283.
Rodicio, R., & Heinisch, J. J. (2013). Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast, 30(5), 165-177.
Scannell, D. R., Frank, A. C., Conant, G. C., Byrne, K. P., Woolfit, M., & Wolfe, K. H. (2007). Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proceedings of the National Academy of Sciences, 104(20), 8397-8402.
Schaffrath, R., & Breunig, K. D. (2000). Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genetics and Biology, 30(3), 173-190.
Sigmon, J., & Larcom, L. L. (1996). The effect of ethidium bromide on mobility of DNA fragments in agarose gel electrophoresis. Electrophoresis, 17(10), 1524-1527.
Simpson-Lavy, K., & Kupiec, M. (2019). Carbon catabolite repression in yeast is not limited to glucose. Scientific reports, 9(1), 6491.
Singleton, R., & Singleton, D. R. (2017). Remembering our forebears: Albert Jan Kluyver and the unity of life. Journal of the History of Biology, 50, 169-218.
Sánchez, M., Iglesias, F. J., Santamaría, C., & Domínguez, A. (1993). Transformation of Kluyveromyces lactis by electroporation. Applied and Environmental Microbiology, 59(7), 2087-2092.
Spohner, S. C., Schaum, V., Quitmann, H., & Czermak, P. (2016). Kluyveromyces lactis: an emerging tool in biotechnology. Journal of biotechnology, 222, 104-116.
Stratford, M. (1992). Lectin-mediated aggregation of yeasts—yeast flocculation. Biotechnology and Genetic Engineering Reviews, 10(1), 283-342.
Swamy, K. B., & Zhou, N. (2019). Experimental evolution: its principles and applications in developing stress-tolerant yeasts. Applied microbiology and biotechnology, 103, 2067-2077.
Thomson, J. M., Gaucher, E. A., Burgan, M. F., De Kee, D. W., Li, T., Aris, J. P., & Benner, S. A. (2005). Resurrecting ancestral alcohol dehydrogenases from yeast. Nature Genetics, 37(6), 630-635.
Tittarelli, F., Varela, J. A., Gethins, L., Stanton, C., Ross, R. P., Suzzi, G., Grazia, L., Tofalo, R., & Morrissey, J. P. (2018). Development and implementation of multilocus sequence typing to study the diversity of the yeast Kluyveromyces marxianus in Italian cheeses. Microbial genomics, 4(2), e000153.
Turcotte, B., Liang, X. B., Robert, F., & Soontorngun, N. (2009). Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS yeast research, 10(1), 2-13.
Vallejo, J., Sánchez-Pérez, A., Martínez, J. P., & Villa, T. (2013). Cell aggregations in yeasts and their applications. Applied microbiology and biotechnology, 97, 2305-2318.
Van Ooyen, A. J., Dekker, P., Huang, M., Olsthoorn, M. M., Jacobs, D. I., Colussi, P. A., & Taron, C. H. (2006). Heterologous protein production in the yeast Kluyveromyces lactis. FEMS yeast research, 6(3), 381-392.
Vingataramin, L., & Frost, E. H. (2015). A single protocol for extraction of gDNA from bacteria and yeast. BioTechniques, 58(3), 120-125.
Váchová, L., & Palková, Z. (2018). How structured yeast multicellular communities live, age and die? FEMS yeast research, 18(4), foy033.
Widdel, F. (2007). Theory and measurement of bacterial growth. Di dalam Grundpraktikum Mikrobiologie, 4(11), 1-11.
Wolfe, K. H., & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387(6634), 708-713.
Zhang, W., Kang, J., Wang, C., Ping, W., & Ge, J. (2022). Effects of pyruvate decarboxylase (pdc 1, pdc 5) gene knockout on the production of metabolites in two haploid Saccharomyces cerevisiae strains. Preparative Biochemistry & Biotechnology, 52(1), 62-69.