簡易檢索 / 詳目顯示

研究生: 陳紫陽
Chen, Tzu-Yang
論文名稱: 設計科幻小說 現實城市與元宇宙的交互運作模式 及生成式AI應用於設計之前景與反思
Design fiction The Interaction Mode between Real Cities and the Metaverse, and the Prospects and Reflections of Generative AI Applications in Design
指導教授: 王逸璇
Wang, I-Hsuan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 134
中文關鍵詞: 元宇宙生成式AI設計科幻小說數位雙生AI輔助設計建築設計設計教育
外文關鍵詞: Metaverse, Generative AI, Design Fiction, Digital Twin, AI-Assisted Design, Architectural Design, Design Education
相關次數: 點閱:526下載:101
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文著作於2023年,是社群媒體標題下的生成式AI(Generative AI)元年。同時元宇宙的發展也因Vision Pro的問世,以及Neuralink的人腦晶片實驗成功而大有前景。本研究藉由設計科幻小說(Design Fiction)的方式推測對未來世界的想像,其目的是演示在科技高速發展下對社會可能造成的變化與衝擊,並提出科技發展議題作為省思。
    研究首先透過文獻回顧確立了設計科幻小說的定義與中文名詞,並建立生成式AI及元宇宙發展的脈絡,再以科幻著作的分析,找尋搭接現在與過去對科技想像的橋樑。研究中發現過去人們對於未來城市的想像是較為薄弱的,其對於未來科技的想像多在於科技發展、科技倫理、社會制度及社會經濟等。本論文透過四個階段的研究,虛擬博物館與實體博物館的交互運作設計、生成式AI於設計教學的應用、生成式AI於醫院建築設計的應用,及生成式AI於設計科幻小說寫作的應用與分析,實際探討生成式AI及元宇宙發展的應用,從中找到未來城市發展的可能性與反思,將其作為設計科幻小說的寫作素材,最終以設計科幻小說的方式將議題展現,並分析論述其結果,整合關於元宇宙和生成式AI發展的可能性和前景。
    本研究發現元宇宙與現實世界的交互運作關係能打破物理環境的限制,發展新的空間互動想像,元宇宙的應用還能促進文化交流及多元性。在生成式AI應用於設計教學中發現,未來的教育應著重於語言學的應用,因為語言是目前人類與AI互動的主要方式。此外未來設計教育應著重於學生在判讀多元資訊的正確性能力,以及對於描述與判讀生成圖像的訓練。於生成式AI應用於建築設計中發現,過度依賴AI可能會造成文化發展怠惰及文化多元性降低。在生成式AI應用於寫作中發現,其作品缺乏文學性與情感,較難使讀者產生共鳴。最終在設計科幻小說的推演中得出,設計與創新體驗應是下個世代最重要的能力,因此個人價值的探索與培養將更顯重要。

    This thesis, written in 2023, aligns with the year the media has labeled as the inaugural year of generative AI. Concurrently, the development of the metaverse shows significant promise, propelled by the launch of Vision Pro and the successful human trials of Neuralink's brain chip. This study employs the method of Design Fiction to speculate on an imaginative future world, aiming to illustrate the potential societal changes and impacts driven by rapid technological advancements, while prompting reflections on technological development.
    The research first establishes the definition and Chinese terminology for Design Fiction through a literature review. It contextualizes the evolution of generative AI and the metaverse, using analyses of science fiction works to bridge past and present technological imaginations. The study reveals that, historically, the focus on future technology has predominantly focused on technological development, technology ethics, social systems, and socioeconomics, with less emphasis on future cities. This thesis explores the applications of generative AI and metaverse development through four stages of research: the interactive operation design of virtual and physical museums, the application of generative AI in design education, the application of generative AI in hospital architectural design, and the application and analysis of generative AI in Design Fiction writing. By investigating these areas, the study identifies potential and reflections on future urban development, using these insights as material for Design Fiction writing. Ultimately, the thesis presents and analyzes these issues through the method of Design Fiction, integrating the possibilities and prospects of metaverse and generative AI development.
    Findings reveal that the interactive dynamics between the metaverse and the real world can transcend physical environmental constraints, fostering innovative spatial interactions; applications of the metaverse can also promote cultural exchange and diversity. In the context of generative AI applied to design education, the research highlights the importance of linguistics, as language is currently the primary interface between humans and AI. Future design education should focus on enhancing students’ abilities to accurately interpret diverse information and describe and interpret generated images. When applied to architectural design, overreliance on AI could lead to cultural stagnation and diminished diversity. When applied to writing, AI-generated content often lacks literary quality and emotional resonance, making it difficult to engage readers. Finally, through the projections of Design Fiction, it is concluded that design and innovative experiences will be the most crucial capabilities of the next generation, emphasizing the importance of exploring and cultivating personal values.

    Abstract摘要 i Contents目錄 viii List of Tables表目錄 xi List of Figures圖目錄 xii 1.緒論 1 1.1.研究緣起 1 1.2.研究目的 4 1.3.研究架構 5 1.3.1.文獻回顧 5 1.3.2.研究方法 6 1.3.3.結果和結論 6 1.3.4.研究架構圖 7 2.文獻回顧 7 2.1.設計科幻小說(Design Fiction) 7 2.1.1.Design Fiction一詞的緣起 7 2.1.2.Design Fiction的辭源定義分析與確立 7 2.2.元宇宙(Metaverse) 11 2.2.1.元宇宙發展的前景 11 2.2.2.元宇宙的發展脈絡、定義與背景 11 2.2.3.元宇宙的技術 13 2.2.4.元宇宙相關議題 13 2.2.5.元宇宙的發展可能性 14 2.3.生成式AI(Generative AI) 14 2.3.1.生成式AI的發展脈絡 14 2.3.2.生成式AI的應用與風險 15 2.3.3.人工智慧是否會取代人類工作 15 2.4.生成式AI應用於元宇宙開發 16 2.4.1.生成式AI輔助元宇宙的開發的前景 16 2.4.2.生成式AI應用於空間設計 16 2.5.科幻著作分析 17 2.5.1.電馭叛客邊緣行者(Cyberpunk Edgerunners) 17 2.5.2.刀劍神域(Sword Art Online) 19 2.5.3.銀翼殺手2049 (Blade Runner 2049) 21 2.5.4.成人世界(Chappie) 22 2.5.5.美麗新世界(Brave New World) 23 2.5.6.科幻小說相關著作列表分析 25 3.分項研究 27 3.1.研究一 元宇宙開發以虛擬與實體博物館的交互運作關係為例 27 3.1.1.研究方法 27 3.1.2.虛擬博物館的概念與目標建立 29 3.1.3.探討虛擬博物館與奇美博物館的互動方式 29 3.1.4.探討如何使用VR/AR裝置與虛擬博物館互動 30 3.1.5.虛擬博物館實作 32 3.1.6.討論 36 3.2.研究二 生成式AI應用於設計教學實作 36 3.2.1.研究方法 37 3.2.2.第一階段實驗 T2I工具結合ChatGPT擴寫 38 3.2.3.第二階段實驗 生成式AI輔助設計實作 43 3.2.4.討論 47 3.2.5.課程前後問卷分析 49 3.3.研究三 生成式AI應用於醫院建築設計 56 3.3.1.研究方法 56 3.3.2.如何將生成式AI導入建築實務設計流程 57 3.3.3.建築計畫書文案生成與資料驗證 59 3.3.4.生成建築計劃書中的概念透視圖 65 3.3.5.討論 68 3.4.研究四 Design Fiction使用ChatGPT寫作實驗(小說文本於附錄) 69 3.4.1.研究方法 70 3.4.2.第一階段實驗 ChatGPT文字生成 71 3.4.3.第二階段實驗 Bing Image Creator圖像生成 75 3.4.4.討論 78 4.Design Fiction寫作 80 4.1.Design Fiction環境設定 80 4.1.1.探討議題 80 4.1.2.環境建構 80 4.1.3.角色設定 83 4.1.4.技術設定 85 4.2.Design Fiction內文 85 5.結論 100 5.1.研究成果 100 5.1.1.分項研究 100 5.1.2.Design Fiction寫作 100 5.2.研究貢獻 105 5.2.1.分析與界定設計科幻小說的名詞意義 105 5.2.2.分項研究 105 5.2.3.Design Fiction寫作 106 5.3.研究限制 107 5.4.未來可能的研究方向 107 文獻參考 109 附錄 112 研究四 Design Fiction使用ChatGPT寫作實驗小說文本 112

    Alissa Wilkinson. (2023, July 14). Hollywood’s writers are on strike. Here’s why that matters. VOX. https://www.vox.com/culture/23696617/writers-strike-wga-2023-explained-residuals-streaming-ai
    Amelia Eqbal. (2023, May 9). Could AI derail the Hollywood writers’ strike? CBC. https://www.cbc.ca/arts/commotion/could-ai-derail-the-hollywood-writers-strike-1.6837660
    Amy Webb. (2023, August 31). How to Prepare for a GenAI Future You Can’t Predict. Harvard Business Review. https://hbr.org/2023/08/how-to-prepare-for-a-genai-future-you-cant-predict
    Ball, M., & Ball, M. (2021). The Metaverse: what it is, where to find it, and who will build it. MatthewBall. vc.
    Bengio, Y., Ducharme, R., & Vincent, P. (2000). A neural probabilistic language model. Advances in Neural Information Processing Systems, 13.
    Billinghurst, M., Clark, A., & Lee, G. (2015). A survey of augmented reality. Foundations and Trends® in Human–Computer Interaction, 8(2–3), 73–272.
    Bleecker, J. (2022). Design fiction: A short essay on design, science, fact, and fiction. Machine Learning and the City: Applications in Architecture and Urban Design, 561–578.
    Borji, A. (2023). A categorical archive of chatgpt failures. ArXiv Preprint ArXiv:2302.03494.
    Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun, L. (2023). A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt. ArXiv Preprint ArXiv:2303.04226.
    Christopoulos, A., Mystakidis, S., Pellas, N., & Laakso, M.-J. (2021). ARLEAN: An augmented reality learning analytics ethical framework. Computers, 10(8), 92.
    Clement, J. (2021). Number of video gamers worldwide in 2021, by region. Statista.
    Çöltekin, A., Lochhead, I., Madden, M., Christophe, S., Devaux, A., Pettit, C., Lock, O., Shukla, S., Herman, L., & Stachoň, Z. (2020). Extended reality in spatial sciences: A review of research challenges and future directions. ISPRS International Journal of Geo-Information, 9(7), 439.
    Dascal, J., Reid, M., IsHak, W. W., Spiegel, B., Recacho, J., Rosen, B., & Danovitch, I. (2017). Virtual reality and medical inpatients: a systematic review of randomized, controlled trials. Innovations in Clinical Neuroscience, 14(1–2), 14.
    Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv Preprint ArXiv:1810.04805.
    Dey, R., & Salem, F. M. (2017). Gate-variants of gated recurrent unit (GRU) neural networks. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), 1597–1600.
    DiLella, C., & Day, A. (2022). Investors are paying millions for virtual land in the metaverse. CNBC Tech Drivers.
    Dionisio, J. D. N., Iii, W. G. B., & Gilbert, R. (2013). 3D virtual worlds and the metaverse: Current status and future possibilities. ACM Computing Surveys (CSUR), 45(3), 1–38.
    Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., & Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv Preprint ArXiv:2010.11929.
    Efros, A. A., & Leung, T. K. (1999). Texture synthesis by non-parametric sampling. Proceedings of the Seventh IEEE International Conference on Computer Vision, 2, 1033–1038.
    Ghannad, P., & Lee, Y.-C. (2022). Automated modular housing design using a module configuration algorithm and a coupled generative adversarial network (CoGAN). Automation in Construction, 139, 104234.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.
    Gupta, A., & Waldron, A. (2023). A Responsible Path to Generative AI in Healthcare. A Responsible Path to Generative AI in Healthcare.
    Heckbert, P. S. (1986). Survey of texture mapping. IEEE Computer Graphics and Applications, 6(11), 56–67.
    Katz, D. M., Bommarito, M. J., Gao, S., & Arredondo, P. (2024). Gpt-4 passes the bar exam. Philosophical Transactions of the Royal Society A, 382(2270), 20230254.
    Kawakami, K. (2008). Supervised sequence labelling with recurrent neural networks. Diss [Doctoral dissertation]. Technical University of Munich.
    Kelly, S. M. (2021). Facebook Changes Its Company Name to Meta| CNN Business. CNN.
    Knill, K., & Young, S. (1997). Hidden Markov models in speech and language processing. In Corpus-based methods in language and speech processing (pp. 27–68). Springer.
    Kristi Waterworth. (2022, February 11). 6 Businesses That Have Bought Land in the Metaverse. The Motley Fool.
    Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision, 10012–10022.
    Lv, Z. (2023). Generative artificial intelligence in the metaverse era. Cognitive Robotics.
    McKinsey & Company. (2022, June). Value creation in the metaverse. McKinsey & Company. https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/value-creation-in-the-metaverse
    Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model. Interspeech, 2(3), 1045–1048.
    Murphy, G. J., & Vint, S. (2010). Beyond cyberpunk: New critical perspectives (Vol. 3). Routledge.
    Mystakidis, S., Fragkaki, M., & Filippousis, G. (2021). Ready teacher one: Virtual and augmented reality online professional development for K-12 school teachers. Computers, 10(10), 134.
    Reynolds, D. A. (2009). Gaussian mixture models. Encyclopedia of Biometrics, 741(659–663).
    Richard Roeper. (2017, October 2). Visual marvel ‘Blade Runner 2049’ as awesome as the original. Chicago Sun-Times. https://chicago.suntimes.com/2017/10/2/18349919/visual-marvel-blade-runner-2049-as-awesome-as-the-original
    Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 3, 74.
    Slusser, G. E., & Shippey, T. A. (1992). Fiction 2000: Cyberpunk and the future of narrative (Vol. 10). University of Georgia Press.
    Sobania, D., Briesch, M., Hanna, C., & Petke, J. (2023). An analysis of the automatic bug fixing performance of chatgpt. 2023 IEEE/ACM International Workshop on Automated Program Repair (APR), 23–30.
    Speicher, M., Hall, B. D., & Nebeling, M. (2019). What is mixed reality? Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–15.
    Stephenson, N. (1994). Snow crash. Penguin UK.
    Sterling, B. (2009). Cover story design fiction. Interactions, 16(3), 20–24.
    Tony Parisi. (2021, October 23). The Seven Rules of the Metaverse. Medium.
    Vance Chang. (2021, December 2). 元宇宙的醫療應用探討-疼痛治療. Medium. https://medium.com/%E9%86%AB%E7%99%82%E5%99%A8%E6%9D%90%E5%B7%A5%E4%BD%9C%E8%80%85%E9%9A%A8%E7%AD%86/%E5%85%83%E5%AE%87%E5%AE%99%E7%9A%84%E9%86%AB%E7%99%82%E6%87%89%E7%94%A8%E6%8E%A2%E8%A8%8E-%E7%96%BC%E7%97%9B%E6%B2%BB%E7%99%82-1d1fba34b3d5
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
    Wijman, T. (2022). Games market revenues will pass $200 billion for the first time in 2022 as the US overtakes China. Newzoo. https://newzoo. com/insights/articles/gamesmarket-revenues-will-pass ….
    Xrhealth. (n.d.). The future of healthcare is here. Xrhealth.
    Yu-Ting Cheng. (2016, December 15). 「設計幻象」是什麼?Design Fiction & Speculative design. Medium. https://medium.com/speculatizen/%E5%92%B1%E5%80%91%E4%BE%86%E8%AB%87%E8%AB%87speculative-design-63d009fc48b5
    Zack Sharf. (2020, September 10). Denis Villeneuve Reveals the Key Difference Between Directing ‘Dune’ and ‘Blade Runner 2049.’ Indiewire.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE