簡易檢索 / 詳目顯示

研究生: 陳澔瑜
Chen, Hao-Yu
論文名稱: 以電化學氮化法改質之316L不鏽鋼應用於PEMFC雙極板
Electrochemical nitridation of 316L stainless steel for PEMFC bipolar plates
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 83
中文關鍵詞: 氮化法不鏽鋼雙極板PEMFC
外文關鍵詞: Nitridation, Stainless steel, Bipolar plate, PEMFC
相關次數: 點閱:109下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於成本低廉、易於量產且在多方面皆符合雙極板的特性需求,不鏽鋼成為目前雙極板材料研究的熱門選項。然而儘管不鏽鋼表面的金屬氧化層能保護基材免於腐蝕的發生,使雙極板能夠在PEMFC的酸性環境中良好地運作,其高阻抗卻會導致雙極板與氣體擴散層間的接觸電阻提高,從而降低PEMFC的功率輸出。因此在維持不鏽鋼材料優異抗蝕性的同時,如何降低其接觸電阻乃是不鏽鋼作為雙極板材料的主要研究目標。
    市售的316L不鏽鋼雖然在PEMFC模擬環境測試中表現出良好的腐蝕性質,卻具有相對高的接觸電阻。因此本研究以電化學氮化法對316L不鏽鋼進行表面改質,於其表面生成抗蝕性與導電性均佳的鉻氮化物保護層,以符合PEMFC雙極板的特性需求。
    為了提高不鏽鋼表面的Cr/Fe比以利鉻氮化物生成,316L不鏽鋼片在進行電化學氮化前先以70°C,3.0M的硝酸酸洗2小時,去除不鏽鋼表面的鐵氧化物。接著酸洗後的不鏽鋼片會在硝酸與硝酸鉀的混合溶液中於室溫下進行電化學氮化。PEMFC模擬加速測試的結果表明,酸洗後在0.1M HNO3 + 0.5M KNO3溶液中以-0.25V氮化2小時的不鏽鋼試片有最佳的腐蝕性能,其在陰極與陽極測試的平衡電流分別為23.3與-30.7 nA/cm2。而在接觸電阻方面,該條件下氮化的試片於140N/cm2下的接觸電阻為16.7mΩ-cm2,相較於未處理之316L不鏽鋼片的86.3mΩ-cm2下降了5倍以上。由本研究的結果來看,電化學氮化法在不鏽鋼雙極板材料表面處理上具有相當高的應用潛力。

    Bipolar plates are one of the most important components in PEMFC. To support membrane electrode assembly (MEA) and connecting single cells, stainless steels are promising candidates because of its mechanical strength, high conductivity, and of course, relatively low cost. However, one of the drawbacks of stainless steel bipolar plates is the high interfacial contact resistance (ICR) due to their surface oxide film. Though providing good protection for the base alloy from further corrosion, the oxide film will definitely decrease the conductivity. Commercially available 316L steel shows high ICR and high corrosion resistance in simulated PEMFC environments. In this work, 316L steel was electrochemically nitrided to form a corrosion-resistant and electrically conductive chromium nitride film.
    To assist the formation of chromium nitride layer, steels were first acid washed in 3.0M HNO3 solution at 70°C for 2 hours to improve the Cr/Fe ratio. Then the steels were electrochemically nitrided in a mixture of HNO3 and KNO3 solutions at room temperature to obtain the surface chromium nitride film. In the simulated PEMFC tests, the steel which had been acid-washed and electrochemically nitrided in 0.1M HNO3 + 0.5M KNO3 at -0.25V for 2 hours showed the lowest current. The results of simulated cathode and anode tests were 23.3 and -30.7 nA/cm2. And the ICR of the nitrided steel decreased to 16.7mΩ-cm2. With such outstanding performances in these tests, it is clear that electrochemical nitridation is a promising way to modify stainless steel for PEMFC bipolar plates.

    摘要 I ABSTRACT II 誌謝 III 目錄 V 表目錄 VIII 圖目錄 X 第 1 章 緒論 1 1-1 研究動機 1 1-2 ANSI 316L不鏽鋼 2 第 2 章 文獻回顧 3 2-1 質子交換膜燃料電池 3 2-1-1 結構與工作原理 3 2-1-2 雙極板的材料與研究發展 7 2-2 不鏽鋼雙極板表面處理技術 11 2-2-1 表面塗層 11 2-2-2 表面改質 13 2-3 腐蝕現象與原理 16 2-3-1 電化學腐蝕 16 2-3-2 極化現象 18 2-3-3 腐蝕電位與腐蝕電流 22 2-3-4 鈍化現象 24 第 3 章 實驗 26 3-1 實驗架構 26 3-2 實驗藥品 26 3-3 儀器與設備 28 3-4 樣品製備 33 3-4-1 不鏽鋼試片預處理 33 3-4-2 酸洗與電化學氮化 34 3-5 腐蝕性能測試 35 3-5-1 白金參考電極電位校正 35 3-5-2 動電位極化曲線評估 36 3-5-3 PEMFC模擬環境加速測試 37 3-6 試片表面分析 38 3-7 接觸電阻 39 第 4 章 結果與討論 41 4-1 酸洗對316L不鏽鋼的影響 41 4-2 電化學氮化 43 4-2-1 氮化電流 44 4-2-1 電化學氮化後電解液成分分析 46 4-3 腐蝕性能測試結果 47 4-3-1 白金參考電極電位 47 4-3-2 動電位極化結果 50 4-2-3 PEMFC模擬環境加速測試 53 4-4 試片表面分析結果 58 4-4-1不同電化學氮化條件對試片表面Cr/Fe比的影響 58 4-4-2酸洗對電化學氮化試片表面Cr/Fe比的影響 61 4-4-3 電化學氮化後之試片XPS表面組成分析 63 4-4-4 電化學氮化條件對試片表面型態的影響 69 4-4-5 酸洗對電化學氮化試片表面型態的影響 72 4-5 接觸電阻 74 第 5 章 結論 77 附錄 79 參考文獻 81

    [1] R. A. Antunes, M. C. L. Oliveira, G. Ett, V. Ett, International Journal of Hydrogen Energy 2010, 35, 3632.
    [2] H. Wang, J. A. Turner, International Journal of Hydrogen Energy 2011, 36, 13008.
    [3] 維基百科.
    [4] F. Barbir, "PEM Fuel Cells: Theory and Practice", Elsevier Inc., 2005.
    [5] 黃鎮江, "燃料電池", 全華圖書股份有限公司.
    [6] F. C. Hydrogen, Development and Demonstration Plan 2011.
    [7] Y. Wang, D. O. Northwood, Electrochimica Acta 2007, 52, 6793.
    [8] S. Joseph, J. C. McClure, R. Chianelli, P. Pich, P. J. Sebastian, International Journal of Hydrogen Energy 2005, 30, 1339.
    [9] M. A. L. García, M. A. Smit, Journal of Power Sources 2006, 158, 397.
    [10] Y. Wang, D. O. Northwood, Journal of Power Sources 2008, 175, 40.
    [11] M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, C. n. Cao, Corrosion Science 2004, 46, 1369.
    [12] B. Elsener, A. Rota, H. Böhni, Materials Science Forum 1989, 44-45, 29.
    [13] Y. Wang, D. O. Northwood, Journal of Power Sources 2007, 165, 293.
    [14] E. A. Cho, U. S. Jeon, S. A. Hong, I. H. Oh, S. G. Kang, Journal of Power Sources 2005, 142, 177.
    [15] W. S. Jeon, J. G. Kim, Y. J. Kim, J. G. Han, Thin Solid Films 2008, 516, 3669.
    [16] W.-Y. Ho, H.-J. Pan, C.-L. Chang, D.-Y. Wang, J. J. Hwang, Surface and Coatings Technology 2007, 202, 1297.
    [17] Y. Fu, G. Lin, M. Hou, B. Wu, Z. Shao, B. Yi, International Journal of Hydrogen Energy 2009, 34, 405.
    [18] Y. Fu, M. Hou, G. Lin, J. Hou, Z. Shao, B. Yi, Journal of Power Sources 2008, 176, 282.
    [19] T. Fukutsuka, T. Yamaguchi, S.-I. Miyano, Y. Matsuo, Y. Sugie, Z. Ogumi, Journal of Power Sources 2007, 174, 199.
    [20] C.-Y. Chung, S.-K. Chen, P.-J. Chiu, M.-H. Chang, T.-T. Hung, T.-H. Ko, Journal of Power Sources 2008, 176, 276.
    [21] K. Feng, Y. Shen, J. Mai, D. Liu, X. Cai, Journal of Power Sources 2008, 182, 145.
    [22] K. Feng, Y. Shen, D. Liu, P. K. Chu, X. Cai, International Journal of Hydrogen Energy 2010, 35, 690.
    [23] K. H. Cho, W. G. Lee, S. B. Lee, H. Jang, Journal of Power Sources 2008, 178, 671.
    [24] S. B. Lee, K. H. Cho, W. G. Lee, H. Jang, Journal of Power Sources 2009, 187, 318.
    [25] C.-Y. Bai, M.-D. Ger, M.-S. Wu, International Journal of Hydrogen Energy 2009, 34, 6778.
    [26] V. V. Nikam, R. G. Reddy, S. R. Collins, P. C. Williams, G. H. Schiroky, G. W. Henrich, Electrochimica Acta 2008, 53, 2743.
    [27] Y. Cao, F. Ernst, G. M. Michal, Acta Materialia 2003, 51, 4171.
    [28] H. Wang, M. P. Brady, G. Teeter, J. A. Turner, Journal of Power Sources 2004, 138, 86.
    [29] K.-H. Lee, S.-H. Lee, J.-H. Kim, Y.-Y. Lee, Y.-H. Kim, M.-C. Kim, D.-M. Wee, International Journal of Hydrogen Energy 2009, 34, 1515.
    [30] D.-G. Nam, H.-C. Lee, Journal of Power Sources 2007, 170, 268.
    [31] B. Yang, M. P. Brady, H. Wang, J. A. Turner, K. L. More, D. J. Young, P. F. Tortorelli, E. A. Payzant, L. R. Walker, Journal of Power Sources 2007, 174, 228.
    [32] W. Liang, Applied Surface Science 2003, 211, 308.
    [33] R. Tian, J. Sun, L. Wang, International Journal of Hydrogen Energy 2006, 31, 1874.
    [34] R. J. Tian, J. C. Sun, L. Wang, Journal of Power Sources 2007, 163, 719.
    [35] D. H. Han, W. H. Hong, H. S. Choi, J. J. Lee, International Journal of Hydrogen Energy 2009, 34, 2387.
    [36] R. D. Willenbruch, C. R. Clayton, M. Oversluizen, D. Kim, Y. Lu, Corrosion Science 1990, 31, 179.
    [37] D. Kim, C. R. Clayton, M. Oversluizen, Materials Science and Engineering: A 1994, 186, 163.
    [38] S.-J. Lee, J.-J. Lai, C.-H. Huang, Journal of Power Sources 2005, 145, 362.
    [39] 徐曉剛, "化工腐蝕與防護", 1 edition, 中國石化出版社, 2009.
    [40] 柯賢文, "腐蝕及其防治", 2 edition, 全華圖書股份有限公司, 2012.
    [41] L. R. F. Allen J. Bard, "ELECTROCHEMICAL METHODS - Fundamentals and Applications", 2 edition, JOHN WILEY & SONS, INC., 2001.
    [42] D. A. Jones, "Principles And Prevention Of Corrosion", 2 edition, Prentice Hill, Inc., 1996.
    [43] "NIST X-ray Photoelectron Spectroscopy Database ".

    下載圖示 校內:2018-08-30公開
    校外:2018-08-30公開
    QR CODE