簡易檢索 / 詳目顯示

研究生: 林志哲
Lin, Chih-Che
論文名稱: 碟型微感應馬達之設計、製作與動態分析
Design, Fabrication and Dynamic Analysis of μ-disc-type Inductive Micro-motor
指導教授: 蔡南全
Tsai, Nan-Chyuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 171
中文關鍵詞: 感應式微型馬達螺線型電磁極模糊順滑控制電容式感測電路轉矩估測
外文關鍵詞: Inductive Micro-motor, Solenoid-type Electro-magnetic Pole, Fuzzy Sliding Mode Control, Capacitive Gap-sensing Readout Circuit, Torque Estimation
相關次數: 點閱:103下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為開發一具有大驅動力與易製作之感應式微型馬達(Inductive Micro-Motor, IMM),此感應式微型馬達主要包含12個新型3D螺線型電磁極(Solenoid-type Electro-magnetic Pole)作為微型馬達之驅動器。 而此新型3D螺線型電磁極不僅作驅動器外,也會藉由3D螺線型電磁極之鐵芯截面與微馬達中央的懸浮微轉子截面構成12組可變電容器,當微轉子發生偏擺位移時,其相對之可變電容值便會產生變化,以取代傳統的氣隙感測器來量測懸浮微轉子之動態。 本論文透過電鍍技術之等向性特性及嵌入式氣隙感測機制,其微型感應馬達整體之製程步驟可減少二道以上之曝光對準次數,並增加製程可靠度。
    首先,本論文先針對所提出之微型感應馬達的設計概念以及作用原理加以說明,並建立其非線性動態方程式,亦透過商用模擬軟體(如:Matlab/Simulink、Ansoft Maxwell與Multisim)針對微型感應馬達之動態特性與轉矩-轉速特性曲線、3D螺線型微線圈之磁力特性以及三相驅動電路與電容式感測電路之性能,進行理論分析與數值模擬驗證。 另外,基於微系統易受外在環境干擾與系統溫度變化所產生之參數不確定性等因素影響,故本論文藉由模糊順滑控制(Fuzzy Sliding Mode Control, FSMC)策略提出一強健控制器,以有效抑制外在干擾與參數不確定性,並維持感應馬達期望之定轉速(或定轉矩)性能。 此外,本論文也透過統御方程式(Governing Equation)針對微系統提出一非接觸式轉矩估測方法,此轉矩估測方法僅藉由馬達轉速回授,即可估測出馬達輸出轉矩以及轉矩-轉速特性曲線。
    最後,本論文成功利用微製程完成所提之感應式微型馬達的雛形製作,並透過線接合(Wiring Bonding)技術把微型感應馬達晶片整合於印刷電路板(Printed Circuit Board)上。 另外,亦經實驗初步驗證,本研究所提出之模糊順滑控制策略於外在干擾影響下,仍能確保感應馬達維持作動於期望之性能。

    In order to enhance the output torque of micro-motor and simplify the corresponding fabrication procedure, an innovative μ-disc-type inductive micro-motor (IMM), including twelve novel 3D solenoid-type Electro-Magnetic (EM) poles, is designed and presented. The novel 3D solenoid-type electro-magnetic pole is not only employed to drive the IMM, but also to measure the position deviation of the micro-disc (i.e., replacement of gap sensor). That is, the cross-sectional facet of iron core of EM poles and the circular brim of disc together are used to constitute twelve equivalent capacitor pairs. Once the position deviation of the disc occurred, the corresponding capacitance of the capacitor pair would be correspondingly varied such that the position deviation of disc can be detected and measured in quantity. On the other hand, by applying the isotropic property of the electroplated technique and embedded capacitive gap-sensing mechanism, the fabrication steps for photo masks to the proposed IMM system can be reduced so that the reliability is enhanced but the production cost is down.
    At first, the design concept, operation principle and nonlinear dynamic equation of the proposed μ-disc-type IMM are presented and developed. Afterwards, by employing the commercial softwares (e.g., Matlab/Simulink, Ansoft Maxwell and Multisim), the torque-speed characterization of the proposed IMM system, the performances of the magnetic force by the arch-type EM poles and the performances of the 3-phase sine-wave drive circuit and capacitive gap-sensing readout circuit are preliminarily examined. In addition, because the performance of the micro-device is essentially affected by the system parameter uncertainty due to the temperature variation of operational environment and a few types of external disturbance, the Fuzzy Sliding Mode Control (FSMC) policy is synthesized to account for the system parameter uncertainty and external disturbance and achieve the designated performance specification of the inductive motor (e.g., constant speed or constant torque). Besides, Torque Estimator Based on Governing Equation (TEBGE) is employed to estimate the output torque and torque-speed curve of the inductive motor once the rotational speed of motor is detected.
    Finally, the chip of proposed μ-disc-type IMM is successfully fabricated by the micro-machining process and connected with Printed Circuit Board (PCB) by wire bonding technique. On the other hand, the performance of the FSMC policy is verified and evaluated by experiments. The experimental results illustrates that the expected performance under regulation of constant speed or constant torque can be fulfilled even if it suffers from external disturbance.

    摘要..........I Abstract..........III 誌謝..........V Table of Contents.........VII List of Tables..........X List of Figures..........XI Nomenclature..........XVI 1. Introduction.........1 1.1 Micro-machined Inductive Motors Versus Conventional Macro-scale Inductive Motors.1 1.2 Literature Review of MEMS-based Motors.....2 1.2.1 Electro-static Micro-motor.......2 1.2.2 Electro-thermal Micro-motor......4 1.2.3 Piezoelectric Micro-motor......5 1.2.4 Electro-magnetic Micro-motor.......6 1.3 Research Motivations and Objectives......9 1.4 Organization of Dissertation......12 2. Design and Operation Principle........15 2.1 Design of μ-disc-type Inductive Micro-motor......15 2.2 Mathematical Model of Inductive Micro-motor.....17 2.3 Induced Magnetic Force of Arch-type Electromagnetic Poles...22 2.4 Self-sensing Capacitive Mechanism to Measure Air Gap....28 2.5 Conclusions.........38 3. Performance Analysis of μ-disc-type Inductive Micro-motor....49 3.1 Analysis of Van Der Waals Force and Damping Effect....50 3.1.1 Van Der Waals Force.......50 3.1.2 Damping Effect........51 3.2 Characterization Analysis of μ-disc-type Inductive Micro-motor...53 3.2.1 Magnetic Force Analysis for arch-type Electromagnetic Pole..53 3.2.2 Speed/Torque Characterization Analysis....56 3.3 Performance Analysis of Driving Circuit and Self-sensing Circuit..58 3.3.1 Driving Circuit for Electromagnetic Poles.....58 3.3.2 Air-gap Self-sensing Capacitive Mechanism.....60 3.4 Conclusions.........67 4. Integrated Feedback Control Loop........87 4.1 Control Goals.........88 4.2 Measurement of Unbalance Degree for Micro-disc....90 4.3 Fuzzy Sliding Mode Control........92 4.3.1 Sliding Mode Control......93 4.3.2 Fuzzy Logic Control.......96 4.4 Torque Estimator Based on Governing Equation (TEBGE)....99 4.5 Performance of FSMC........101 4.6 Conclusions........104 5. Fabrication and Experimental Results.......115 5.1 Micro-fabrication Processes......115 5.1.1 Fabrication Process of Stator Structure Layer....116 5.1.2 Fabrication Process of Disc Structure Layer....121 5.2 Performances of IMM Chip.......123 5.3 Realizations of Drive Circuit......126 5.4 Torque-Speed Characteristic Curve by TEBGE.....128 5.5 Performances Verification of Control Policy......130 5.5.1 Constant Speed Control.......131 5.5.2 Constant Torque Control......132 5.6 Conclusions........133 6. Conclusions and Future Works.......155 6.1 Conclusions........155 6.2 Contributions........156 6.3 Future Works.........158 References...160 Curriculum Vitae ..167

    Acar, C., “Robust Micromachined Vibratory Gyroscopes,” Ph.D. Dissertation, Universuty of California at Berkeley, California, USA, 2004.
    Ahn, C.H., Kim, Y.J., Allen, M.G., “A Planar Variable Reluctance Magnetic Micromotor with Fully Integrated Stator and Coils,” Journal of Microelectromechanical Systems, Vol. 2. No. 4, pp. 165-173, 1993.
    Arthur, C., Ellerington, N., Hubbard, T., Kujath, M., “MEMS Earthworm: a Thermally Actuated Peristaltic Linear Micromotor,” Journal of Micromechanics and Microengineering, Vol. 21, p. 035022, 2011.
    Buttgenbach, S., Feldmann, M., “Application of UV Depth Lithography in Micro System Technology,” Optoelectronic Letters, Vol. 4, No. 1, pp. 1-4, 2008.
    Cao, G., “Nanostructures and Nanomaterials: Synthesis, Properties, and Applications,” World Scientific Publishing Co., London, 2004.
    Chan, M.L., Yoxall, B., Park, H., Kang, Z., Izyumin, I., Chou, J, Megens, M.M., Wu, M.C., Boser, B.E., Horsley, D.A., “Design and Characterization of MEMS Micromotor Supported on Low Friction Liquid Bearing,” Sensors and Actuators A: Physical, Vol. 177, pp. 1-9, 2012.
    Choia, K., Park, K., “3-D Shape Measurement System using a Gap Control between the Optical Laser Displacement Sensor and Object Surface,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 6049, p. 60490S, 2005.
    Damrongsak, B., Kraft, M., Rajgopal, S., Mehregany, M., “Design and Fabrication of a Micromachined Electrostatically Suspended Gyroscope,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 222, No. 1, pp. 53-63, 2008.
    Edwards, C., Spurgeon, S.K., “Sliding Mode Control: Theory and Applications,” Taylor and Francis, London, 1998.
    Fan, L.S., Tai, Y.C., Muller, R.S., “IC-Processed Electrostatic Micro-motors,” Technical Digest - International Electron Devices Meeting, pp. 666-669, 1988.
    Feustel, A., Krusemark, O., Müller, J., “Numerical Simulation and Optimization of Planar Electromagnetic Actuators,” Sensors and Actuators A: Physical, Vol. 70, No. 3, pp. 276-282, 1998.
    Gau, W.C., Chang, T.C., Lin, Y.S., Hu, J.C., Chen, L.J., Chang, C.Y., Cheng, C.L., “Copper Electroplating for Future Ultralarge Scale Integration Interconnection,” Journal of Vacuum Science and Technology A, Vol. 18, pp. 656-661, 2000.
    Geisberger, A., Kadylak, D., Ellis, M., “A Silicon Electrothermal Rotational Micro Motor Measuring one Cubic Millimeter,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 1943-1950, 2006.
    Ghalichechian, N., Modafe, A., Lang, J.H., Ghodssi, R., “Dynamic Characterization of a Linear Electrostatic Micromotor Supported on Microball Bearings,” Sensors and Actuators A: Physical, Vol. 136, pp. 496-503, 2007.
    Gindila, M.V., Kraft, M., “Electronic Interface Design for an Electrically Floating Micro-disc,” Journal of Micromechanics and Microengineering, Vol. 13, No. 4, pp. S11-S16, 2003.
    Guckel, H., Christenson, T.R., Skrobis, K.J., Jung, T.S., Klein, J., Hartojo, K.V., Widjaja, I., “A First Functional Current Excited Planar Rotational Magnetic Micromotor,” MEMS’93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, IEEE, pp. 7-11, 1993.
    Guo, J.-G., Zhao, Y.-P., “Influence of van der Waals and Casimir Forces on Electrostatic Torsional Actuators,” Journal of Microelectromechanical Systems, Vol. 13, No. 6, pp. 1027-1035, 2004.
    Huang, I.-Y., Chen, G.-M., Lee, Y.-C., “Low-friction Large Step-size Micromotor Driven by a Scratch-drive Actuator with Bounceback Mechanism,” Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 7, No. 4, 2008.
    Hughes, A., Drury, B., “Electric Motors and Drives: Fundamentals, Types and Applications,” Newnes, Oxford, 2013.
    Kuehnel, W., “Modelling of the Mechanical Behaviour of a Differential Capacitor Acceleration Sensor,” Sensors and Actuators A: Physical, Vol. 48, No. 2, pp. 101-108, 1995.
    Lai, Y., “Eddy Current Displacement Sensor with LTCC Technology,” Ph.D. Dissertation, Universität Freiburg, Freiburg, Switzerland, 2005.
    Lee, S, Kim, D, Bryant, M.D., Ling, F.F., “A Micro Corona Motor,” Sensor and Actuator A: Physical, Vol. 118, pp. 226-232, 2005.
    Li, H.X., Gatland, H.B., Green, A.W., “Fuzzy Variable Structure Control,” IEEE Transactions on Systems, Man, and Cybernetics, Vol., 27, No. 2, pp. 306-312, 1997.
    Livermore, C., Forte, A.R., Lyszczarz, T., Umans, S.D., Ayon, A.A., Lang, J.H., “A High-Power MEMS Electric Induction Motor,” Journal of Microelectromechanical Systems, Vol. 13. No. 3, pp. 465-471, 2006.
    McGuire, P.M., “Mechanical Vibration-Balance quality Requirements for Rotors in a Constant (Rigid) State-Part 1: Specification and Verification of Balance Tolerances,” ISO 1940, 2003.
    Meirovitch, L., “Methods of Analytical Dynamics,” McGraw-Hill, New York, 1970.
    Morita, T., Kurosawa, M.K., Higuchi, T., “A Cylindrical Shaped Micro Ultrasonic Motor Utilizing PZT Thin Film,” Sensors and Actuators A: Physical, Vol. 83, pp. 225-230, 2000.
    Palm, R., “Robust Control by Fuzzy Sliding Mode,” Automatica, Vol. 61, No. 9, pp. 1429-1437, 1994.
    Park, J.-S., Chu, L.L., Oliver, A.D., Gianchandani, Y.B., “Bent-Beam Electrothermal Actuators-Part II: Linear and Rotary Microengines,” Journal of Microelectromechanical Systems, Vol. 10, No. 2, pp. 255-262, 2001.
    Perruquetti, W., Barbot, J.P., “Sliding Mode Control in Engineering,” Marcel Dekker, New York, 2002.
    Rogers, G., “Three Degree-of-freedom Piezoelectric Ultrasonic Micro-motor with a Major Diameter of ,” Journal of Micromechanics and Microengineering, Vol. 20, p. 125002, 2010.
    Tsai, N.-C., Chiang, C.-W., “High-frequency Linear Compressor and Lateral Position Regulation,” IEEE Transactions on Control Systems Technology, Vol. 20, No. 1, pp. 127-138, 2012.
    Tsai, N.-C., Liou, J.-S., Lin, C.-C., Li, T., “Suppression of Dynamic Offset of Electromagnetic Drive Module for Micro-gyroscope,” Mechanical Systems and Signal Processing, Vol. 25, No. 2, pp. 680-693, 2011.
    Vasseur, P., Billat, A., “Contribution to the Development of a Smart Sensor using Eddy Currents for Measurement of Displacement,” Measurement Science and Technology, Vol. 5, No. 8, pp. 889-895, 1994.
    Watson, B., Friend, J., Yeo, L., “Modelling and Testing of a Piezoelectric Ultrasonic Micro-motor Suitable for in Vivo Micro-robotic applications,” Journal of Micromechanics and Microengineering, Vol. 20, p. 115018, 2010.
    Xiu, S., Liu, J., Li, C., Cai, G., “Study on Balance Precision of Ultra-High Speed CBN Grinding Wheel System,” Key Engineering Materials, Vol. 375-376, pp. 614-618, 2008.
    Young, K.D, Utkin, V.I, Ozguner, U., “A Control Engineer’s Guide to Sliding Mode Control,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 3, pp. 328-342, 1999.
    Zhang, J., Schroff, M., “High-Performance Micromotor Control Systems,” The 29th Annual Conference of the IEEE, Industrial Electronics Society, Vol. 1, pp. 347-352, 2003.
    Zhang, W.M., Meng, G., Zhou, J.B., Chen, J.Y., “Slip Model for the Ultra-thin Gas-lubricated Slider Bearings of an Electrostatic Micromotor in MEMS,” Microsystem Technologies, Vol. 15, pp. 953-961, 2009.

    下載圖示 校內:2018-12-25公開
    校外:2019-12-25公開
    QR CODE