簡易檢索 / 詳目顯示

研究生: 楊伯文
Yang, Bol-wen
論文名稱: 製程的條件對一維奈米材料生長的影響
Effects of the Fabrication Parameters on the Growth of One Dimensional Nano-materials
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 98
中文關鍵詞: 碳化矽奈米線基材陰極激發光譜奈米碳管
外文關鍵詞: SiC nanowire, substrate, carbon nanotube, CNT, Cathodoluminescence
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著元件製程技術的需求提升,電子元件持續朝向微小化邁進,這使的奈米線或奈米晶粒的製程技術顯的彌足重要,也有驅策許多單位積極的思考,如何使奈米材料與現有的矽晶圓作異質結合。其中,碳化矽因具有良好的高溫穩定性,已經廣泛的被用來製作高能電子元件或高溫元件。常見的碳化矽的相有兩種:体心立方的β-SiC及六方晶系的α-SiC,其中β-SiC具有2.2eV的間接能隙,具有發綠光的特性,可作特殊的光電用途。
      在本實驗裡,我們採用化學氣相沉積法成長碳化矽奈米線,使用二茂鐵作催化劑,矽晶圓作基材(有經過研磨、經過蝕刻、原始三種),反應溫度900°C- 1100°C,總流量50sccm。反應後的產物經過分析,我們發現有兩種產物被發現,一種是奈米碳管,另一種是實心的碳化矽奈米線,結構呈現同芯雙層。經過TEM及拉曼散射的分析後確定其芯層為体心立方晶格的β-SiC,殼層則為非晶質的物質。
      關於碳化矽奈米線的產生機制,主要是來自二茂鐵與矽基材。反應物矽源即是來自於矽基材。微觀上,這是由於基材表面研磨造成表面不規則的奈米級結構,使「尺寸效應」變的顯著,導致矽與碳低溫反應的可能性提高;在巨觀上,從碳化矽奈米線的產量與基材表面粗糙程度的關聯可得到映證。

      The size of electronic devices are demanded to be small, and the processing technique of nanowires and nanoparticles become more important. how to produce hetero-junctions between silicon wafer and nanomaterials, of which SiC has been adopted widely as high-energy electronic devices or high-temperature devices for its large good stability in high temperature. There are two common forms of SiC: hexagonal α-SiC, and cubic-centered β-SiC which can be utilized to specialized electro-optical devices for its indirect bandgap with bandgap energy of 2.2eV to generate green light.

      In this thesis, chemical vapor deposition is adopted for the epitaxy growth of SiC nanowire, with ferrocene as the catalyst and silicon wafer as the substrate (scratched, etched, or as received). The reactive temperature is 900°C- 1100°C and the flow rate is 50sccm After analysis, the products after reaction are found to be carbon nanotube(CNT) and solid SiC nanowire with nanoscale coaxial cable. TEM and Raman scattering revealed the core consists of body-centered cubic β-SiC and the shell is formed with amorphous material.

      SiC nanowire is synthesized with ferrocene and silicon wafer. Microscopically, the scratching process leads to the nano-sized irregular surface of the substrate, therefore the size effect becomes significant, and the probability for the reaction of silicon and carbon at low temperature is increased. Macroscopically, the relationship between the overall production and roughness can be verified.

    中文摘要 Ⅰ 英文摘要 Ⅱ 總目錄 Ⅲ 圖目錄 Ⅵ 表目錄 X 第一章 緒論 1.1前言 1 1.2 研究目標 3 第二章 文獻回顧與理論基礎 2.1 簡介 4 2.2 碳化矽奈米線的合成 7 2.3 奈米碳管的合成 13 2.4 拉曼散射光譜分析 15 2.5 陰極激發發光分析 18 第三章 實驗方法與分析儀器 3.1 儀器設備 20 3.1.1 製程設備 21 3.3.2 檢測設備 24 3.2 基材的備製 25 3.3 實驗參數 28 3.3.1 單段式升溫 28 3.3.2 雙段式升溫 30 3.4 石英管清洗方式 32 第四章 結果與討論 4.1 基材的影響 33 4.1.1 基材設計 33 4.1.2 基材表面形態與奈米線生長的關係 34 4.1.3 多接點奈米線 39 4.1.4 提高溫度情況下,奈米線的生長與基材的關係 42 4.2 催化劑的量對產量的影響 49 4.3 甲烷/氫氣比例的影響 50 4.4 溫度的影響 52 4.4.1 SEM分析 52 4.4.2 TEM分析 54 4.4.3 拉曼散射光譜分析 58 4.5 以上總結 60 4.6 雙段持溫 61 4.6.1 基材的差 61 4.6.2 與單段升溫作比較 67 4.6.3 t1持溫時間的差異 69 4.6.4 t2持溫時間的差異 70 4.6.5 TEM分析 72 4.6.6 拉曼光譜分析 77 4.7 雙段持溫 4.7.1 SEM分析 79 4.7.2 TEM分析 81 4.7.3 拉曼散射光譜分析 84 4.8 陰極激發光譜分析 86 4.9 反應機制的探討 90 第五章 結論 94

    1. 枼思武編,新陶瓷學,復文書局,1990
    2. D.K. Ferry, High-field transport in wide-band-gap semiconductors, 1975, Phys. Rev. B 12:2361
    3. Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon , 1998, Science 281:973
    4. A.M.Morales, C.M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, 1998, Science 279:208
    5. J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Control of Thickness and Orientation of Solution-Grown Silicon Nanowires , 2000, Science 287:1471
    6. M.H. Huang, Y.Y. Wu, H.N. Feick, N. Tran, E. Weber, P.D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport, 2001, Adv. Mater. 13:113
    7. J. I. Pankove, Y. M. Tairov and Y. A. Vodakov, Electroluminescence,1977
    8. S.I. Vlaskina, Silicon carbide LED, Semiconductor Physics, Quantum Electronics & Optoelectronics, 2002, V.5, N1, 71-75
    9. 中國材料科學學會,材料分析,1998,p.241
    10. O. Kordina, Linköping Studies in Science and Technology Dissertations on Line, No.352, Linköping University, 1994,
    11. Z.L. Wang, Z.R. Dai, R.P. Gao, and Z.G. Bai, Side-by-side silicon carbide–silica biaxial nanowires: Synthesis, structure, and mechanical properties, 2000, V.77 21: 3349-3351
    12. J. Wei, K.Z. Li, Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant, 2006, Materials Chemistry and Physics 95:140-144
    13. R. Schroeder, High-Performance Organic Transistor Using Solution- Processed Nanoparticle-Filled High-k Polymer Gate Insulators, 2005, Advanced Materials 17:1535-1539
    14. Z.J. Li, H.J. Li, Large-scale synthesis of crystalline β-SiC nanowires, 2003, Appl. Phys. A. 76:637-640
    15. J.W. Liu, D.Y. Zhong, Synthesis of SiC nanofibers by annealing carbon nanotubes covered with Si, 2001, Chem. Phys. Lett. 348:357-360
    16. W. Han, D. Yu, Continuous synthesis and characterization of silicon carbide nanorods,1997, Chem. Phys. Lett. 265:374-378
    17. H.J. Choi, Growth and modulation of silicon carbide nanowires, 2004, J. Crystal Growth. 269:472-478
    18. B.C. Kang , Growth of β-SiC nanowires on Si(100) substrate by MOCVD using nickel as a catalyst, 2004, Thin Solid Films 464-465:215-219
    19. B.C. Kang, Growth of β-SiC nanowires and thin films by metalorganic chemical vapor deposition using dichloromethylvinylsiline, 2005, J. Vac. Sci. B 23(4)
    20. D. Zhou, S. Seraphin, Production of silicon carbide whiskers from carbon nanoclusters , 1994, Chem. Phys. Lett. 222:233
    21. C. Liu, H.M. Cheng, Magnetic nanocables-Silicon carbide sheathed with iron-oxide-doped amorphous silica, 2006, Appl. Phys. Lett. 88:043105
    22. M. Yacaman, M. Yoshida, Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett. 1993, 62:202
    23. A.G. Rinzler, H.J. Dai, Large-scale purification of single-wall carbon nanotubes: process, product, and characterization, 1998, Appl. Phys. A 67:29-31
    24. H.M. Cheng, Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, 1998, Appl. Phys. Lett. 72:25
    25. L. Ci, S. Xie Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method, 2001, Journal of Crystal Growth V.233 4:823-828
    26. Z.F. Ren, Z.P Huang, J.W. Xu, Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass , 1998, Science 282:1105
    27. S.S. Fan, M.G. Chapline, Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties , N.R. Franklin, 1999, Science 283:512
    28. Z.J. Zhang, Substrate-site selective growth of aligned carbon nanotubes, 2000, Appl. Phys. Lett. V.77 N.23
    29. H. Araki, Effect of Substrate Materials on Growth of Carbon nanotubes by Chemical Vapor Deposition Using Metal-Phthalocyanines, 1999, J. Appl. Phys. V.38 p.1351-1353
    30. T. Katayama, Observation of carbon nanotubes synthesized on various substrates using metal-phthalocyanine, 2001, 121:1235-1236
    31. 黃文雄,儀器總攬4-化學分析儀器,行政院國家科學委員會精密儀器發展中心出版,1998
    32. Wikipedia, http://en.wikipedia.org/wiki/Ferrocene
    33. Material Safety Data Sheets on Line(MSDS), http://www.msdsonline.com/
    34. Jyh-Ming Ting, Chi-Chih Chang, Multijunction carbon nanotube network, 2002, Appl. Phys. Lett., V.80 2:324-325
    35. Jyh-Ming Ting, Tsung-Pei Li, Carbon nanotubes with 2D and 3D multiple junctions, 2004, Carbon V.42 14: 2997-3002
    36. R.S. Wanger, W.C. Eillis, The vapor-liquid-solid mechanism of silicon, 1964, Appl. Phys. Lett. 4:89-90
    37. 張淇芝,基材的備製對氣相成長碳纖維/管之影響,成功大學材料工程系碩士論文,2001
    38. Keisuke Kametani, Growth of SiC nanodots on Si(111) by exposure to ferrocene and annealing studied by scanning tunneling microscopy, 2004, Thin Solid Films 467:50-53
    39. 成會明編,奈米碳管,五南書局出版,2004,p.31
    40. H. Hiura, T.W. Ebbesen, K. Tanigaki, et al., Raman studies of carbon nanotubes, 1993, Chem. Phys. Lett. 202:509
    41. Diego Olego, Pressure dependence of Raman phonons of Ge and 3C-SiC, 1982, Phys. Rev. B V.25, No.2
    42. Monika Wieligor, Raman spectra of silicon carbide small particles and nanowires, 2005, J. Phys.:Condens. Matter 17:2387-2395
    43. Y.H. Mo, O.H. Cha, Growth and characterization of SiC micro-crystals on Si(100) substrate by the chemical vapor deposition method, 2002, Diamond and Related Materials 11:1703-1708
    44. D.H. Feng, Catalyst synthesis and photoluminescence of needle-shaped 3C-SiC nanowires, 2003, Solid State 128:295-297
    45. G. S. Fu, The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas, 2005, Europhys. Lett. 69(5) 758-762
    46. Y. Ryu, Y. Tak and K. Yong, Direct growth of core-shell SiC-SiO2 nanowires and field emission characteristics, 2005, Nanotechnoligy 16:370-374
    47. Hai-Feng Zhang, Helical Crystalline SiC/SiO2 Core-Shell Nanowires, 2002, NanoLetters V.2, No.9, 941-944

    下載圖示 校內:2007-08-15公開
    校外:2007-08-15公開
    QR CODE