簡易檢索 / 詳目顯示

研究生: 林佩儀
Lin, Pei-Yi
論文名稱: 不鏽鋼316L直接能量沉積製程優化與微結構特性分析
Analysis of Process Optimization and Microstructure Characterization of the SS316L in Direct Energy Deposition
指導教授: 李輝煌
Lee, Huei-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 106
中文關鍵詞: 積層製造薄壁金屬工件表面平整度沉積效率孔隙率稀釋率晶相結構資料庫智慧化機械
外文關鍵詞: Direct energy deposition, Surface evenness, Deposition efficiency, Dilution, Porosity
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造(Additive manufacturing,AM)採用離散材料(液體、粉末、絲、片、板、塊等)逐層累加原理製造實體零件的技術。一種無模加工方法。本方法不受物件形狀與複雜度限制,可直接根據電腦繪製之三維物件依照需要的材料製作實體物件,其備有客製化、節能、迅速、彈性、極高性價比等優點而達成「設計個人化、浪費極小化」,現正逐漸用於一些產品的少量直接製造,特別是一些高價值應用,如生醫零件或航太零件都可以採用這種技術。雖然加法製造的積層成型技術有很多的優點,但仍然有一些瓶頸需要去克服,如、沉積效率、成品頂部高低差、孔隙率與機械性質等問題。 本研究目的為運用實驗方式,建立智慧型生產設備的智能資料庫。實驗分別研究針對不同製程參數來探討其對成品品質之影響,找出有顯著影響力之因子及最佳化之趨勢。
    本研究透過一次因子實驗分析各因子對沉積品質的影響,對實驗結果進行分析形成沉積缺陷之原因,並進一步變動製程嘗試解決,進行最佳化分析以提高沉積效率與表面平整度。除了宏觀的表面品質分析外,也將對微結構進行探討,針對雷射功率、送粉量及雷射掃描速度三個具有顯著影響力之參數分析了其對孔隙率、稀釋率及晶相結構之影響及最佳化之趨勢。並將實驗結果透過數值軟體整合,建立出「成品品質預測方程式」。成功建立成型資料庫,達到製程最佳化目標來當作智慧化機械之起步。

    AM (Additive manufacturing) is a novel technique to manufacture physical parts layer by layer using discrete materials such as liquid, powder, silk, film, plate, block, etc. Different from the traditional processing methods using equipment to subtract parts, for example, the use of lathe processing, grinding, etc. The purpose of AM is to achieve "personalized design, waste minimization". The process has advantage of customization, energy saving, rapid, flexible and high-performance performance. Currently, medical parts or aerospace parts can use this technology for a small number of direct manufacturing products.

    Although the additive manufacturing technology has many advantages, there are still some bottlenecks need to overcome. The influence of process parameters on the quality of cladding needs to be studied. In order to design a robust process, the materials and heat transfer knowledge are essential. The related literature must be searched to define appropriate performance index. Meanwhile picking out important experiment parameters, so that the research process more efficient and the results more valuable.

    To simplify the complexity of laser cladding experiment design, we listed total adjustable parameters table, excluding the less impact of experiment factors, and first sorted out the appropriate setting range of parameters. In this paper, the direct manufacture of rectangular thin-walled parts were analyzed to find out the key factor parameters on the porosity, dilution, surface evenness and deposition efficiency of the impact and confirmed the difference before and after.

    摘要 I Extended Abstract II 誌謝 XV 目錄 XVII 表目錄 XXI 圖目錄 XXII 第一章、緒論 1 1-1 前言[1-3] 1 1-2 研究動機與目的 4 1-3 研究方法 7 1-4 文獻回顧 8 1-5 文章架構 19 第二章、相關技術與理論背景 21 2-1 積層製造技術 21 2-1-1 積層製造優勢及應用 21 2-1-2 積層製造種類 22 2-2 雷射相關技術 24 2-2-1 雷射器構成[1] 24 2-2-2 碟片雷射[1][2][4] 24 2-2-3 雷射沉積原理 27 2-3 實驗設備 29 2-4 粉末與基鈑材料性質 32 2-4-1 粉末之成分分析 32 2-4-2 粉末之粒徑分佈分析 33 2-4-2 粉末之形貌分析 34 2-5 因子選擇 35 第三章、雷射沉積成品之微觀表現優化與分析 38 3-1 製程問題描述 38 3-2 試片之製備及微觀結構分析方法 39 3-3 孔隙率(Porosity) 39 3-3-1 孔隙率之量測及計算 40 3-3-1 雷射功率與孔隙率之關係 43 3-3-2 掃瞄速度與孔隙率之關係 46 3-3-3 供粉量與孔隙率之關係 49 3-4 稀釋率(Dilution)及晶相結構 52 3-4-1 雷射功率對稀釋率及晶相結構之影響 53 3-4-2 掃瞄速度對稀釋率及晶相結構之影響 57 3-4-3 供粉量對稀釋率及晶相結構之影響 61 3-5 微結構與機械性值之關係 63 3-6 本章小節 67 第四章、雷射沉積成品宏觀表現之優化與分析 68 4-1 製程問題描述 68 4-2 製程參數對平整度之影響 68 4-2-1 測壁平整度 68 4-2-2 頂部平整度 71 4-3 製程參數對沉積效率之影響 77 4-3-1 沉積效率定義(Deposition efficiency) 77 4-3-2 實驗結果 78 4-3-3稀釋率與沉積效率之關係 81 4-4 沉積效率之優化 84 4-4-1 沉積高度探討(Cladding height) 84 4-4-2 實驗驗證 88 4-5本章小結 89 第五章、進階製程參數研究 90 5-1 能量比及粉末密度對沉積製程研究 91 5-2 稀釋率控制之探討 91 5-3 實驗驗證 96 5-4 本章小結 97 第六章、結論與未來工作 98 6-1 結論 98 6-2 未來工作 99 參考文獻 102 索引 105

    [1] 陳蒼杰, 圖解雷射應用與原理, 世茂出版有限公司, 台灣 (2001).
    [2] 劉國基、張百齊, Nd-YAG 雷射的加工應用, 遠東學報, 台灣 (2001).
    [3] 楊隆昌, 雷射發展的趨勢與應用, 中工高雄會刊, 台灣 (2014).
    [4] Yao-Min Shi, Simulation and Improvement of the SS 316L Powder Flow in Direct Energy Deposition Process, MS Thesis , Department of Engineering Science, National Cheng Kung University, June, 2017..
    [5] G. P. Dinda, A. K. Dasgupta, and J. Mazumder, "Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability," Materials Science and Engineering: A, Vol. 509, No. 1, pp. 98-104 (2009).
    [6] Jehnming Lin, "Numerical simulation of the focused powder streams in coaxial laser cladding," Journal of Materials Processing Technology, Vol. 105, No. 1, pp. 17-23 (2000).
    [7] Yanmin Li, Haiou Yang, Xin Lin, Jianguo Li, and Yaohe Zhou, "The influences of processing parameters on forming characterizations during laser rapid forming," Materials Science and Engineering: A, Vol. 360, No. 1, pp. 18-25 (2003).
    [8] Gangxian Zhu, Dichen Li, Gang Pi, and Yiping Tang, "The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition," Optics & Laser Technology, Vol. 44, No .2, pp. 349-356 (2012).
    [9] Kai Zhang, Shijie Wang, Weijun Liu, and Xiaofeng Shang, "Characterization of stainless steel parts by laser metal deposition shaping," Materials & Design, Vol. 55, pp. 104-119 (2014).
    [10] J. Dutta Majumdar, A. Pinkerton, Z.Liu, I. Manna, and L. Li, "Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel," Applied Surface Science, Vol. 247, No. 1, pp. 320-327 (2005).
    [11] Tan Hua, Temperature Measurement and Research on Microstructure Controlling in Laser Rapid Forming Process, Master Thesis, Department of Materials Processing Engineering, Northwestern Polytechnical University, April 2005.
    [12] Hyoung-Keun Lee, "Effects of the cladding parameters on the deposition efficiency in pulsed Nd:YAG laser cladding," Journal of materials processing technology, Vol. 202, No. 1, pp. 321-327 (2008).
    [13] Chen, X. and Tao, Z., Maximum thickness of the laser cladding. Key Engineering Materials, 1989. 46: p. 381-386.
    [14] Kar, A. and Mazumder, J., Extended solid solution and nonequilibrium phase diagram for Ni-Al alloy formed during laser cladding. Metallurgical Transactions A, 1989. 20: p. 363-371.
    [15] Schneider, M.F., Laser Cladding with Powders, Ph.D. thesis, University of Twente at Enschede, The Netherlands, 1998.
    [16] Alireza Fathi, Ehsan Toyserkani, and Amir Khajepour, "Prediction of melt pool depth and dilution in laser powder deposition," Journal of Physics D: Applied Physics, Vol. 39, No. 12, pp. 2613‐23 (2006).
    [17] Pinkerton, Andrew J., "Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances." Journal of Physics D: Applied Physics, Vol. 37, No. 14, (2004).
    [18] Lijun Song, Jyoti Mazumder, "Control of melt pool temperature and deposition height during direct metal deposition process," The International Journal of Advanced Manufacturing Technology, Vol. 58, Issue 1-4, pp. 247-256 (2012).
    [19] Meriaudeau, F., "Control and optimization of the laser cladding process using matrix cameras and image processing," Journal of Laser Applications, Vol. 8, No. 6, pp. 317-324 (1996).
    [20] Sames, William J., "The metallurgy and processing science of metal additive manufacturing," International Materials Reviews, Vol. 61, No. 5, pp. 315-360 (2016).
    [21] A.B. Spierings, "Comparison of density measurement techniques for additive manufactured metallic parts,“ Rapid Prototyping Journal, Vol. 17, Issue 5, pp. 380-386 (2011).
    [22] Hussam El Cheikha, Bruno Couranta, Samuel Branchua, Xiaowei Huangc, Jean-Yves Hascoëtb, and Ronald Guilléna, "Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures," Optics and Lasers in Engineering, Vol. 50, No. 12, pp. 1779-1784 (2012).
    [23] S.Y. Wen, Y.C. Shin, J.Y. Murthy, and P.E. Sojka, "Modeling of coaxial powder flow for the laser direct deposition process," International Journal of Heat and Mass Transfer, Vol. 52, No. 25, pp. 5867-5877 (2009).
    [24] S. Sun, Y. Durandet, and M. Brandt, "Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel," Surface and Coatings Technology, Vol. 194 , No. 2, pp. 225-231 (2005).
    [25] Yongjun Huang, "Characterization of dilution action in laser-induction hybrid cladding," Optics & Laser Technology, Vol. 43, No. 5, pp. 965-973 (2011).
    [26] Rasheedat M. Mahamood, Esther T. Akinlabi, Mukul Shukla, and Sisa Pityana, "Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite," Materials & Design, Vol. 50, pp. 656-666 (2013).
    [27] A. B. Spierings, M. Schneider, and R. Eggenberger, "Comparison of density measurement techniques for additive manufactured metallic parts," Rapid Prototyping Journal, Vol. 17, No. 5, pp. 380-386 (2011).
    [28] J. Mazumder, A. Schifferer, and J. Choi, "Direct materials deposition: designed macro and microstructure," Materials Research Innovations, Vol. 3, No. 3, pp.118-131 (1999).
    [29] Subrata Mondal, C. P. Paul, L. M. Kukreja, Asish Bandyopadhyay, and Pradip Kumar Pal, "Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface," The International Journal of Advanced Manufacturing Technology, pp. 1-6 (2013).

    下載圖示 校內:2023-07-13公開
    校外:2023-07-13公開
    QR CODE