簡易檢索 / 詳目顯示

研究生: 蘇雲鵬
Su, Yun-Peng
論文名稱: 概念集群法於情緒分析之研究
Sentimental Analysis using Conceptual Clustering Approach
指導教授: 李昇暾
Li, Sheng-Tun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 48
中文關鍵詞: 情緒分類模糊正規概念分析概念集群田口法實驗設計
外文關鍵詞: Sentiment, Categorization, Fuzzy Formal Concept Analysis, Conceptual Clustering, Taguchi Method, Experimental Design
相關次數: 點閱:99下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人是群居的動物,所以人和人之間的相處必定會產生一些交互作用,也就是互動(Human communication),透過互動,使得雙方能夠清楚的瞭解到互相要傳遞給對方的資訊,在這些被傳遞的資訊裡面,會有隱藏很多除了字面意義上的資訊,像是身份,事情緣由以及當下的情緒等等。在研究分析的領域中時常用到的問卷調查,有時候為了即時性和便利性,必須用少數且有限的字數下表達當下想傳達的內容和狀態,因為文章或句子的長度很簡短,如果僅著重文字意義上的辨識,常常會遺漏很多重要的資訊,但若要靠人工一一深入的分析辨識,往往又會因為資料量的龐大而耗費過多的人力以及資源,導致效率的不彰,而電腦軟硬體的快速發展,剛好可以替代人力來解決這問題。
    本研究希望針對模糊化之正規情境及正規概念中物件與屬性的隸屬度進行探討,期望能以全自動的方式,將模糊正規情境以及概念網路建立,並從中找出文件中隱含的情緒,並做分類的動作,並針對本研究的各項參數值,利用田口法(Taguchi Method, TM)進行實驗設計,並找出較佳的參數組合,以取代傳統的人工分類。

    Human beings are social creatures. Thus, getting along with others must have got some interactions. In other words, one is able to clearly comprehend the information that the other would like to deliver to by human communication. In these delivered information, some messages such as identification, causes of occurrences and sentiments at that time would be hidden except literal meanings. For the sake of the immediateness and convenience, questionnaires which are frequently used in the project analyzed region must occasionally use a few and limited words to express and to deliver the matters and statuses at that moment. In questionnaires, the sentences or the articles are almost brief. Therefore, we may miss plenty of important information frequently if we just emphasize the expression of literal meanings. Enormous amount of data and consumption of human resources may cause inefficiency if we analyze and recognize by manpower. This trouble is solved because of the rapid development of computer software and hardware. Computers has substituted for the usage of manpower
    In the research, we probe into fuzzy formal context and membership value between objects and attributes in fuzzy formal concept. We expect to build up a bridge between fuzzy formal context and concept lattice with an automatic mode. So that we can discover the hidden sentiments in documents and categorize them. In order to obtain a better parameter combination, we proceed an experimental design by choosing Taguchi Method according to each parameter value in the research. Nevertheless, we hope that traditional manpower categorization can be replaced by this research someday in the future.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1研究背景和動機 1 1.2研究目的 2 1.3研究步驟和流程 3 第二章 文獻探討 4 2.1情緒理論 4 2.1.1情緒的定義 4 2.1.2情緒的類別 4 2.1.3情緒分類的相關研究 5 2.2文件的資訊擷取及分類 6 2.2.1文件分類及流程 7 2.2.2文件預處理與特徵選取 8 2.2.3向量空間模型與詞頻-逆向文件頻率 10 2.3模糊正規概念分析 12 2.3.1模糊理論 12 2.3.2正規概念分析 14 2.3.3模糊正規概念分析 18 2.4田口方法 19 2.4.1田口的品質概念 20 2.4.2品質特性種類 21 2.4.3對應的SN比 21 2.4.4影響產品或製程績效的因子 22 2.4.5穩健設計 23 第三章 研究方法 25 3.1研究流程 25 3.2文件向量的建立 26 3.2.1文件預處理 26 3.2.2文件特徵選取與特徵詞權重計算 26 3.3用模糊正規概念分析法建立概念網路 27 3.3.1找出模糊正規情境 27 3.3.2建立概念網路 28 3.4文件概念集群以及分類器參數調整 29 3.4.1文件概念集群與建構分類器 29 3.4.2田口式參數設計法 30 第四章 實驗與分析 32 4.1實驗方法 32 4.1.1資料集簡介 32 4.1.2 效能評估指標 33 4.2田口參數設計法 34 4.3實驗結果 36 4.3.1與支撐向量機的比較 38 4.3.2統計成對T檢定 40 第五章 結論與未來展望 44 5.1結論 44 5.2未來展望 44 參考文獻 46 中文 46 英文 46

    中文
    K. T. Strongman著,游恆山 譯,情緒心理學,五南書局,民國八十二年。

    鄭燕琴,田口品質工程技術理論與實務,中華民國品質管制學會,民國八十二年。

    陳明佑,「利用模糊目標規劃法求解田口式多品質特性最佳化問題」,國立成功大學工業管理研究所碩士論文,民國九十一年六月。
    英文
    Abebe, A. J., Guinot, V. & Solomatine, D. P. (2000). Fuzzy alpha-cut vs. Monte Carlo techniques in assessing uncertainty in model parameters. In Proc. 4th International Conference on Hydroinformatics, Iowa City, USA.
    Burusco, A. & Fuentes-González, R. (1998). Construction of the L-fuzzy concept lattice. Fuzzy Sets and systems, 97(1), 109–114.
    Cannon, W. B.,(1931). Again the James-Lange theory of emotion: a critical examination and an alternative theory. Am. J. Psychol, 39, 106-24.
    Chaovalit, P. and Zhou, L. (2005). Movie Review Mining: a Comparison between Supervised and Unsupervised, Proceedings of the 38th Hawaii International Conference on System Sciences, 112c- 112c.
    Cross, V. (2003). Uncertainty in the Automation of Ontology Matching. In Uncertainty Modeling and Analysis, International Symposium on (Vol. 0, p. 135). Los Alamitos, CA, USA: IEEE Computer Society.
    D. B. Bracewell, (2008). Semi-Automatic Creation of an Emotion Dictionary Using WordNet and its Evaluation. Proceedings of the IEEE conference on Cybernetics and Intelligent Systems, 21-24.
    Everts, T. J., Park, S. S., & Kang, B. H. (2006). Using formal concept analysis with an incremental knowledge acquisition system for web document management. In Proceedings of the 29th Australasian Computer Science Conference - Volume 48, ACSC '06 (pp. 247–256).
    Fei, Z., Liu, J. and Wu G. (2004). Sentiment classification using phrase patterns. The Fourth International Conference on Computer and Information Technology, 1147-1152.
    Heckerman, D. (1997). Bayesian networks for data mining. Data mining and knowledge discovery, 1(1), 79–119.
    J. Yang, D. B. Bracewell, F. Ren, and S. Kuroiwa (2008). The Creation of a Chinese Emotion Ontology Based on HowNet. Engineering Letters, 16(1), 166-171.
    Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. Proceedings of 10th European Conference on Machine-learning, 137-142.
    Paul R. Kleinginna, Jr. & Anne M. Kleinginna (1981). A categorized list of emotion definitions, with suggestions for a consensual definition. Motivation and Emotion, 5(4), 345-379.
    Lee, H. M., Chen, C. M. & Hwang, C. W. (2000). A neural network document classifier with linguistic feature selection. Intelligent Problem Solving. Methodologies and Approaches, 555–560.
    Maron, M. E. (1961). Automatic Indexing: An Experimental Inquiry. Journal of the ACM, 8(3), 404-417.
    Porter, M. (1980). An Algorithm for Suffix Stripping. Program, 14(3), 130–137.
    Phadke, M. S. (1989). Quality engineering using robust design, AT&T Laboratories.
    Quan, T. T., Hui, S. C., Fong, A. C. & Cao, T. H. (2006). Automatic fuzzy ontology
    generation for semantic web. IEEE Transactions on Knowledge and Data Engineering, 842–856.
    Quan, T. T., Hui, S. C. & Cao, T. H. (2005). A fuzzy FCA-based approach for citation-based document retrieval. In Cybernetics and Intelligent Systems, 2004 IEEE Conference on (Vol. 1, pp. 578–583).
    Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-Machine Studies, 27(3), 221-234.
    Quinlan, J. R. (1996). Bagging, Boosting, and C4.5. IN PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, 725-730.
    R. W. Picard, E. Vyzas. & J. Healey.(2001). Toward machine emotional intelligence: analysis of affective physiological state, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1175-1191.
    Salton, G., Wong, A. & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613–620.
    Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1-47.
    Teng, Z., Ren, F. and Kuroiwa, S. (2007). Emotion recognition from text based on the rough set theory and the support vector machines. International Conference on Natural Language Processing and Knowledge Engineering, 36-41.
    Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL'02), 417-424.
    Turney, P. D. and Littman, M. L. (2003). Measuring praise and criticism: inference of semantic orientation from association. ACM Transactions on Information Systems, (Vol. 21, pp. 315-346).
    Wang, T. & Chiang, H. (2007). Fuzzy support vector machine for multi-class text categorization. Information Processing & Management, 43(4), 914-929.
    Wille, R. & Mathematik, F. (1982). RESTRUCTURING LATTICE THEORY: AN APPROACH BASED ON HIERARCHIES OF CONCEPTS.
    Wolff, K. E. (1993). A first course in formal concept analysis. SoftStat, 93, 429–438.
    Wu, C. H., Chuang, Z. J., and Lin, Y. C. (2006). Emotion recognition from text using semantic labels and separable mixture models. ACM Transactions on Asian Language Information Processing, (Vol. 5, pp. 165-183).
    Yang, Y. and Liu, X. (1999). A re-examination of text categorization methods. Proceedings of 22nd ACM International Conference on Research and Development in Information Retrieval, 16–19.
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, (8), 338-353.

    下載圖示 校內:2018-06-30公開
    校外:2018-06-30公開
    QR CODE