簡易檢索 / 詳目顯示

研究生: 陳莉婷
Chen, Li-Ting
論文名稱: 斑馬魚細胞質型絲胺酸羥基甲基轉移酶啟動子區域的選殖與特性研究
Cloning and characterization of zebrafish cytosolic serine hydroxymethyltransferase promoter region
指導教授: 傅子芳
Fu, Tzu-Fun
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 67
中文關鍵詞: 葉酸細胞質型絲胺酸羥基甲基轉移酶斑馬魚啟動子
外文關鍵詞: folate, cytosolic serine hydroxymethyltransferase, promoter, zebrafish
相關次數: 點閱:137下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 絲胺酸羥基甲基轉移酶(serine hydroxymethyltransferase,SHMT,E.C. 2.1.2.1)須與pyridoxal phosphate(PLP)結合才具酵素活性,它可催化四氫葉酸(THF)與5, 10-甲烯基四氫葉酸(5,10-methylene-THF)及絲胺酸(serine)與甘胺酸(glycine)的可逆式反應。此外它可與大部分葉酸結合,調控葉酸循環中單碳官能基的流向,影響核苷酸、胺基酸的生合成及甲基化,與基因表現、染色體穩定有關。在大多數的多細胞生物中,發現有一種形式以上的SHMT存在:細胞質型和另一種胞器相關型,通常為粒線體型。在人與斑馬魚個體中,細胞質型SHMT(cSHMT)的mRNA具有組織特異性。因此想研究斑馬魚cSHMT(zcSHMT)調控機轉。我們從斑馬魚染色體選殖zcSHMT 基因5端上游promoter序列至pGL3-basic載體,轉染至斑馬魚肝臟上皮細胞(zebrafish liver epithelial cell,ZLE)測定啟動子活性。並從RLM-RACE cDNA Library構築zcSHMT 5’-UTR決定轉錄起始點。經過縮減啟動子序列並測定轉錄活性後,發現含轉錄活性的最小啟動子序列為zcSHMT 5端序列-72/+25(zcSHMTp-72/+25)。zcSHMTp-68/+1也具有啟動子活性,但有明顯下降。將zcSHMTp-72/+25與zcSHMTp-68/+1作探針與斑馬魚肝臟核蛋白進行Electrophoresis Mobility Shift Assay (EMSA)結合反應,發現有蛋白與探針形成具專一性複合物。去除-72/-25序列,-25/+25不具有啟動子活性。推論有轉錄因子結合-72/-25序列引響起動子活性。運用網路軟體transcription element search software(TESS)分析可能結合至-72/-25序列的轉錄因子,結果顯示有多種轉錄因子結合序列。其中包含兩個Sp1結合序列。利用點突變將Sp1結合位置改變,其轉錄活性呈現有意義下降。但共同轉染斑馬魚Sp1表現質體與zcSHMTp-72/+25/pGL3-basic質體至ZLE,其轉錄活性未上升反而有意義下降。將zcSHMTp-72/+25中的Sp1結合位置改變後,發現仍可與斑馬魚肝臟核蛋白結合,推論Sp1不是直接結合在zcSHMT啟動子序列,可能需透過其他轉錄因子協助。另外我們建立測定葉酸及同半胱胺酸方法,初步結果顯示大量表現斑馬魚10-甲醛四氫葉酸去氫酶(zebrafish 10-formyl-THF dehydrogenase,zFDH)的293T細胞其培養基中,所含同半胱胺酸濃度有明顯升高的現象。

    Serine hydroxymethyltransferase (SHMT, E.C. 2.1.2.1) is a pyridoxal phosphate-dependent enzyme. It reversibly converts serine and H4PteGlu to glycine and 5, 10-CH2-H4PteGlu, the principal pathway to generate folate-activated one-carbon units required for purine, thymidylate and methionine biosynthesis. In higher organisms more than one SHMT isoform is often present: a cytosolic isoform and an organelle-associated form, usually mitochondria. It is suggested that cytosolic SHMT (cSHMT) regulates one-carbon flow and maintains intracellular one-carbon units homeostasis by alternating the one-carbon flow between dTMP biosynthesis and homocysteine remethylation. Therefore, the intracellular level of cSHMT is believed to be stringently regulated. The aim of this study is to search for the possible regulatory mechanism for zebrafish cSHMT (zcSHMT) expression. We have cloned and characterized the zcSHMT promoter region into promoterless pGL3-basic vector for promoter activating analysis. Serial deletion of the promoter region reveals that the zcSHMT 5’ flanking sequence -72/+25 fragment (zcSHMTp-72/+25) encompassing partial exon 1 sequence is crucial for the transactivation activity. Protein-nucleotide complexes are observed in Electrophoresis Mobility Shift Assay (EMSA) using digoxigenin (DIG)-labeled zcSHMTp-72/+25 probe and incubating with zebrafish liver nuclear extract. Sequence analysis of the zcSHMTp-72/+25 reveals consensus sequences for several transcription factors including Sp1. Significant reduction in transactivation activity is observed when the prospective Sp1 binding sites are abolished by site-directed mutagenesis. However, co-transfection of zebrafish Sp1 coding sequence to ZLE cell results in decreased promoter transaction activity of this promoter region. In addition, the zcSHMTp-72/+25 fragment with abolished Sp1 sites is still capable of forming protein-nucleotide complex with zebrafish liver extract, suggesting components or mechanisms other than that simple-direct binding of Sp1 might be involved in zcSHMT promoter activation. The methods for homocysteine and folate detection were also established and successfully applied to determine folate and homocysteine concentration in bio-samples.

    中文摘要…..………...….......... I Abstract…..…………...….......... II 誌謝 III 目錄……… VI 表目錄……..... VI 圖目錄…………..... VI 附錄目錄………... VII 縮寫檢索表…... IX 第一章 緒論…… 1 1.1 葉酸………... 1 1.2 同半胱胺酸………………… 2 1.3 絲胺酸羥基甲基轉移酶(serine hydroxymethyltransferase;SHMT)…… 3 1.4 真核生物轉錄之介紹………… 4 1.5 斑馬魚模式動物……………… 5 1.6 研究動機………………… 6 第二章 材料及方法…….... 7 2.1 細胞株及實驗藥品…………… 7 2.2 斑馬魚胚胎染色體萃取……………… 7 2.3 建構斑馬魚細胞質型絲胺酸羥基甲基轉移酶(zcSHMT)啟動子區域…… 7 2.3.1 PCR放大zcSHMT基因五端上游序列……... 7 2.3.2 利用T載體選殖(clone)目標基因……… 8 2.3.3 大腸桿菌轉型實驗 (E. coli transformation) ………9 2.3.4 篩選質體…… 9 2.4 次選殖(subclone)目標基因至pGL3-basic載體……10 2.5 定點突變zcSHMT promoter region ………10 2.6 大量質體DNA製備(Midi-prep)…… 10 2.7 核酸定序分析……………… 11 2.8 E.coli勝任細胞的製備…………… 11 2.9 ZLE細胞之轉染…………….. 11 2.10 同時轉染zcSHMT啟動子-72/+25及zebrafish Sp1(zSp1)表現質體至 ZLE細胞…… 12 2.11 啟動子活性分析………… 12 2.12 凝膠遷移檢測(Electrophoretic Mobility Shift Assays,EMSA) ………... 12 2.12.1 斑馬魚肝臟與胚胎之核蛋白萃取…… 12 2.12.2 製作DIG標定之探針……… 13 2.12.3 製備競爭核苷酸…… 14 2.12.4 結合反應………… 14 2.12.5 Native-PAGE (polyacrylamide gel electrophoresis)及轉漬…… 14 2.12.6 固定反應…… 15 2.12.7 Blocking及抗體結合反應… 15 2.12.8 呈色反應…… 15 2.13 同半胱胺酸 (homocysteine,Hcys) 衍生物測定…… 16 2.14 葉酸分析…………… 16 第三章 結果…………... 18 3.1 zcSHMT 5端序列的啟動子選殖與序列分析…… 18 3.2 zcSHMT 5端序列的啟動子活性測定………… 20 3.3 zcSHMT啟動子序列與斑馬魚肝臟核蛋白結合之能力……… 22 3.4 定點突變zcSHMTp-72/+25之Sp1結合序列…… 22 3.5 表現斑馬魚Sp1蛋白對zcSHMTp-72/+25轉錄活性的影響…… 22 3.6 表現人類Sp1及Sp3蛋白對zcSHMTp-72/+25轉錄活性的影響………23 3.7 Sp1結合序列對於zcSHMTp-72/+25與班馬魚肝臟核蛋白結合的影響… 24 3.8 同半胱胺酸測定…………… 25 3.9 葉酸測定………………… 25 第四章 討論....... 26 4.1 選殖株序列的討論……………….… 26 4.2 與選殖株zcSHMT-72/+25序列結合的轉錄因子討論……27 4.3 討論zcSHMTp-72/+25與Sp1蛋白的關係……27 4.4 HPLC分析同半胱胺酸與葉酸之討論…………28 參考文獻.......... 29 表目錄 表一 PCR製備選殖株之細節………………………………………………… 35 表二 選殖株之製備策略……………………………………………………… 36 表三 PCR製備定點突變選殖株之細節……………………………………… 37 表四 核心啟動子要素與轉錄因子對照……………………………………… 38 圖目錄 圖一 我們選殖之zcSHMT 5端序列-3984/+25與斑馬魚資料庫SHMT 5端序 列-3984/+25比較示意圖………………………………………………… 39 圖二 運用網路軟體transcription element search software (TESS)分析可能 結合至zcSHMT 5端序列-600/+25選殖株的轉錄因子………….…… 40 圖三 zcSHMT啟動子活性之比較圖………………………………………… 41 圖四 zcSHMTp-72/+25探針與班馬魚肝臟核蛋白之凝膠遷移檢測………… … 42 圖五 zcSHMTp-68/+1探針與班馬魚肝臟核蛋白之凝膠遷移檢測………… 43 圖六 定點突變zcSHMTp-72/+25潛在Sp1結合序列對啟動子活性影響… 44 圖七 同時轉染zcSHMTp-72/+25及zebrafish Sp1 (zSp1)表現質體至斑馬魚 肝臟上皮細胞(ZLE)其myc標籤蛋白表現……………………………...現……………………………………………………………… 45 圖八 zSp1蛋白表現對zcSHMT啟動子轉錄活性之影響……..……………… 46 圖九 human Sp1(hSp1)、human Sp3(hSp3)蛋白表現對zcSHMT啟動子轉錄活性之影響……………………………………………………… 47 圖十 含Sp1結合序列之zcSHMTp-36/-21序列、不含Sp1結合序列之 zcSHMTp-72/+25序列對於zcSHMTp-72/+25探針與班馬魚肝臟核蛋 白結合之影響…..…………………………………………………...…… 48 圖十一 同半胱胺酸之測定分析………………………...……………………… 49 圖十二 zFDH大量表現對細胞外同半胱胺酸之影響………………………… 50 圖十三 葉酸之測定分析………………………………...……………………… 51 附錄目錄…………………………………………………………………………... 附錄一 葉酸結構……………………………………………………………… 52 附錄二 單碳循環……………………………………………………………… 53 附錄三 Sp1-like轉錄因子的zinc-fingers……………………………………… 54 附錄四 zcSHMT 5端序列-980/+25之比較…………………………………… 55 附錄五 zcSHMT 5端序列-611/+38選殖株與斑馬魚資料庫zcSHMT 5端序 列-572/+25之比較……………………………………………………… 56 附錄六 斑馬魚資料庫zcSHMT 5端序列-3984/+25與選殖株zcSHMTp -3984/+25之序列比………………………………..…………………… 57 附錄七 zcSHMT 5端序列-3984/+25選殖株與zcSHMT 5端序列-600/+25選殖株於-600/+25之序列比較………………………………………… 61 附錄八 溶液配方……………………………………………………………… 62 附錄九 試劑與材料…………………………………………………………… 64 附錄十 儀器………………………………………………………………… 66 自述 67

    Andersson, A., A. Lindgren, et al. (1995). "Effect of thiol oxidation and thiol export from
    erythrocytes on determination of redox status of homocysteine and other thiols in
    plasma from healthy subjects and patients with cerebral infarction." Clin Chem
    41(3): 361-6.
    Balaghi, M. and C. Wagner (1993). "DNA methylation in folate deficiency: use of CpG
    methylase." Biochem Biophys Res Commun 193(3): 1184-90.
    Bertrand, R. and J. Jolivet (1989). "Methenyltetrahydrofolate synthetase prevents the
    inhibition of phosphoribosyl 5-aminoimidazole 4-carboxamide ribonucleotide
    formyltransferase by 5-formyltetrahydrofolate polyglutamates." J Biol Chem
    264(15): 8843-6.
    Bickmore, W. A., K. Oghene, et al. (1992). "Modulation of DNA binding specificity by
    alternative splicing of the Wilms tumor wt1 gene transcript." Science 257(5067):
    235-7.
    Blount, B. C., M. M. Mack, et al. (1997). "Folate deficiency causes uracil misincorporation
    into human DNA and chromosome breakage: implications for cancer and neuronal
    damage." Proc Natl Acad Sci U S A 94(7): 3290-5.
    Bottiglieri, T. (2005). "Homocysteine and folate metabolism in depression." Progress in
    Neuro-Psychopharmacology and Biological Psychiatry 29(7): 1103-1112.
    Bouwman, P. and S. Philipsen (2002). "Regulation of the activity of Sp1-related
    transcription factors." Mol Cell Endocrinol 195(1-2): 27-38.
    Butterworth, C. E., Jr., C. M. Baugh, et al. (1969). "A study of folate absorption and
    metabolism in man utilizing carbon-14--labeled polyglutamates synthesized by the
    solid phase method." J Clin Invest 48(6): 1131-42.
    Byrne, P. C., P. G. Sanders, et al. (1995). "Translational control of mammalian serinehydroxymethyltransferase expression." Biochem Biophys Res Commun 214(2):
    496-502.
    Chang, W. N., J. N. Tsai, et al. (2007). "Serine Hydroxymethyltransferase Isoforms Are
    Differentially Inhibited by Leucovorin: Characterization and Comparison of
    Recombinant Zebrafish Serine Hydroxymethyltransferases." Drug Metabolism and
    Disposition 35(11): 2127-2137.
    Davenport, J. (1996). "Macrocytic anemia." Am Fam Physician 53(1): 155-62.
    Durand, P., M. Prost, et al. (2001). "Impaired homocysteine metabolism and
    atherothrombotic disease." Lab Invest 81(5): 645-72.
    Dynan, W. S. and R. Tjian (1983). "The promoter-specific transcription factor Sp1 binds to
    upstream sequences in the SV40 early promoter." Cell 35(1): 79-87.
    Ercikan-Abali, E. A., D. Banerjee, et al. (1997). "Dihydrofolate reductase protein inhibits
    its own translation by binding to dihydrofolate reductase mRNA sequences within
    the coding region." Biochemistry 36(40): 12317-12322.
    Frick, B., K. Schrocksnadel, et al. (2003). "Rapid measurement of total plasma
    homocysteine by HPLC." Clin Chim Acta 331(1-2): 19-23.
    Garrow, T. A., A. A. Brenner, et al. (1993). "Cloning of human cDNAs encoding
    mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal
    localization." J Biol Chem 268(16): 11910-6.
    Gidoni, D., J. T. Kadonaga, et al. (1985). "Bidirectional SV40 transcription mediated by
    tandem Sp1 binding interactions." Science 230(4725): 511-517.
    Girgis, S., I. M. Nasrallah, et al. (1998). "Molecular cloning, characterization and
    alternative splicing of the human cytoplasmic serine hydroxymethyltransferase
    gene." Gene 210(2): 315-324.
    Girgis, S., I. M. Nasrallah, et al. (1998). "Molecular cloning, characterization andalternative splicing of the human cytoplasmic serine hydroxymethyltransferase
    gene." Gene 210(2): 315-24.
    Girgis, S., J. R. Suh, et al. (1997). "5-Formyltetrahydrofolate regulates homocysteine
    remethylation in human neuroblastoma." J Biol Chem 272(8): 4729-34.
    Grunwald, D. J. and J. S. Eisen (2002). "Headwaters of the zebrafish -- emergence of a
    new model vertebrate." Nat Rev Genet 3(9): 717-24.
    Hankey, G. J. and J. W. Eikelboom (1999). "Homocysteine and vascular disease." Lancet
    354(9176): 407-13.
    Herbig, K., E. P. Chiang, et al. (2002). "Cytoplasmic serine hydroxymethyltransferase
    mediates competition between folate-dependent deoxyribonucleotide and
    S-adenosylmethionine biosyntheses." J Biol Chem 277(41): 38381-9.
    Hyun, T. H. and T. Tamura (2005). "Trienzyme extraction in combination with
    microbiologic assay in food folate analysis: an updated review." Exp Biol Med
    (Maywood) 230(7): 444-54.
    Jacobsen, D. W. (1998). "Homocysteine and vitamins in cardiovascular disease." Clin
    Chem 44(8 Pt 2): 1833-43.
    Karlseder, J., H. Rotheneder, et al. (1996). "Interaction of Sp1 with the growth-and cell
    cycle-regulated transcription factor E2F." Mol Cell Biol 16(4): 1659-67.
    Katar, S., N. Ozbek, et al. (2006). "Nutritional Megaloblastic Anemia in Young Turkish
    Children is Associated With Vitamin B-12 Deficiency and Psychomotor
    Retardation." Journal of Pediatric Hematology/Oncology: Volume 28(9): 559-562.
    Koutsodontis, G., I. Tentes, et al. (2001). "Sp1 Plays a Critical Role in the Transcriptional
    Activation of the Human Cyclin-dependent Kinase Inhibitor p21 WAF1/Cip1 Gene
    by the p53 Tumor Suppressor Protein." Journal of Biological Chemistry 276(31):
    29116-29125.Krupenko, S. A. and N. V. Oleinik (2002). "10-formyltetrahydrofolate dehydrogenase, one
    of the major folate enzymes, is down-regulated in tumor tissues and possesses
    suppressor effects on cancer cells." Cell Growth Differ 13(5): 227-36.
    Ladomery, M. and G. Dellaire (2002). "Multifunctional zinc finger proteins in development
    and disease." Ann Hum Genet 66(Pt 5-6): 331-42.
    Liu, X., B. Reig, et al. (2000). "Human cytoplasmic serine hydroxymethyltransferase is an
    mRNA binding protein." Biochemistry 39(38): 11523-31.
    Maniatis, T., S. Goodbourn, et al. (1987). "Regulation of inducible and tissue-specific gene
    expression." Science 236(4806): 1237-45.
    McKnight, S. and R. Tjian (1986). "Transcriptional selectivity of viral genes in mammalian
    cells." Cell 46(6): 795-805.
    Miranda, C. L., P. Collodi, et al. (1993). "Regulation of cytochrome P450 expression in a
    novel liver cell line from zebrafish (Brachydanio rerio)." Arch Biochem Biophys
    305(2): 320-7.
    Morrison, A. A., R. L. Viney, et al. (2007). "The post-transcriptional roles of WT1, a
    multifunctional zinc-finger protein." BBA-Reviews on Cancer.
    Muntjewerff, J. W., N. van der Put, et al. (2003). "Homocysteine metabolism and
    B-vitamins in schizophrenic patients: low plasma folate as a possible independent
    risk factor for schizophrenia." Psychiatry Res 121(1): 1-9.
    Needleman, S. B. and C. D. Wunsch (1970). "A general method applicable to the search for
    similarities in the amino acid sequence of two proteins." J Mol Biol 48(3): 443-53.
    Patring, J. D. M., J. A. Jastrebova, et al. (2005). "Development of a Simplified Method for
    the Determination of Folates in Baker's Yeast by HPLC with Ultraviolet and
    Fluorescence Detection." Journal of Agricultural and Food Chemistry 53(7):
    2406-2411.Perry, C., R. Sastry, et al. (2005). "Mimosine attenuates serine hydroxymethyltransferase
    transcription by chelating zinc. Implications for inhibition of DNA replication." J
    Biol Chem 280(1): 396-400.
    Rebeille, F., S. Ravanel, et al. (2006). "Folates in plants: biosynthesis, distribution, and
    enhancement." Physiologia Plantarum 126(3): 330-342.
    Refsum, H., P. M. Ueland, et al. (1998). "Homocysteine and cardiovascular disease." Annu
    Rev Med 49: 31-62.
    Selhub, J., P. F. Jacques, et al. (1995). "Association between plasma homocysteine
    concentrations and extracranial carotid-artery stenosis." N Engl J Med 332(5):
    286-91.
    Stover, P. and V. Schirch (1991). "5-Formyltetrahydrofolate polyglutamates are slow tight
    binding inhibitors of serine hydroxymethyltransferase." J Biol Chem 266(3):
    1543-50.
    Stover, P. and V. Schirch (1992). "Evidence for the accumulation of a stable intermediate in
    the nonenzymatic hydrolysis of 5,10-methenyltetrahydropteroylglutamate to
    5-formyltetrahydropteroylglutamate." Biochemistry 31(7): 2148-55.
    Stover, P. and V. Schirch (1993). "The metabolic role of leucovorin." Trends Biochem Sci
    18(3): 102-6.
    Suh, J. R., A. K. Herbig, et al. (2001). "New perspectives on folate catabolism." Annu Rev
    Nutr 21: 255-82.
    Suzuki, Y., J. Shimada, et al. (1999). "Physical Interaction Between Retinoic Acid Receptor
    and Sp1: Mechanism for Induction of Urokinase by Retinoic Acid." Blood 93(12):
    4264.
    Tamura, T., Y. Mizuno, et al. (1997). "Food folate assay with protease,-amylase, and folate
    conjugase treatments." J. Agric. Food Chem 45: 135-139.Thomas, M. C. and C. M. Chiang (2006). "The general transcription machinery and
    general cofactors." Crit Rev Biochem Mol Biol 41(3): 105-78.
    Wagner, C. (2001). "BIOCHEMICAL ROLE OF FOLATE IN CELLULAR
    METABOLISM1*." Clinical Research and Regulatory Affairs 18(3): 161-180.
    Wickramasinghe, S. N. and S. Fida (1994). "Bone marrow cells from vitamin B12- and
    folate-deficient patients misincorporate uracil into DNA." Blood 83(6): 1656-61.
    Woeller, C. F., D. D. Anderson, et al. (2007). "Evidence for small ubiquitin-like
    modifier-dependent nuclear import of the thymidylate biosynthesis pathway." J Biol
    Chem 282(24): 17623-31.

    下載圖示 校內:2013-02-13公開
    校外:2018-02-13公開
    QR CODE