| 研究生: |
林政勳 Lin, Cheng-Hsun |
|---|---|
| 論文名稱: |
利用層流式微生物燃料電池進行利於微生物發電的碳源篩選 Screening of carbon sources for enhancing the performance of microbial fuel cell using laminar flow based microfluidic microbial fuel cell. |
| 指導教授: |
王翔郁
Wang, Hsiang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 無膜式裝置 、微流道 、微生物燃料電池 、碳源 |
| 外文關鍵詞: | membraneless, microfluidic, microbial fuel cell, carbon sources |
| 相關次數: | 點閱:99 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著生質能源日益受到重視,微生物燃料電池成為替代性能源重要發展的一環,本研究透過無膜式微流體微生物燃料電池,利用其開路電壓差進行微生物的產電活性比較,並將結果與實驗室規模裝置進行對照,印證微型裝置可以應用於微生物、碳源之篩選,並可以有效預估微生物燃料電池脫離產電遲滯其所花費時間,藉此改善實驗室規模微生物燃料電池之操作條件與其效率。
無膜式微流體微生物燃料電池的組成包含:具有Y形微流體通道的矽膠片與鍍有兩片金微電極的玻璃載玻片,上述兩者透過氧電漿進行表面改質黏合形成微型微生物燃料電池裝置。透過針筒注射器於Y形微通道分別輸入陽極液和陰極液可形成層流,因此陽極和陰極不需要安裝質子交換膜即可被隔開,玻片上的微電極以電線連接到三用電表即可測量開路電壓。
微型裝置具有下列幾個優點,快速的產電分析,意味著不需要在設備中進行微生物的培養,因此陽極的性質不會影響微生物活性的評估。此外,利用微型裝置所花費的檢測時間低於一小時,將比實驗室規模微生物燃料電池快上許多。其二,不需要安裝質子交換膜,代表可以避免質子交換膜隨著時間老化而使得傳遞效果降低。而微型裝置的設計是為了盡量減少外界因素的影響,純粹以開路電壓差異反映微生物在存活狀態與去活性狀態下產電的能力。本研究在不改變陽極電解液內容物為前提下,使用UV光照射作為去除微生物活性,經實驗發現照射UV光90秒去活性效果較佳,且在樣品光學密度(O.D.)不小於0.3時,有相當良好的偵測靈敏度。
本研究將此微流體微生物燃料電池應用在檢驗不同碳源對於混合族群微生物產電的影響,其中碳源包括:葡萄糖、蔗糖、醋酸鈉和甘油。結果顯示,蔗糖適合此混合族群微生物應用於電力產生,其產電結果比其它碳源高出約40%。本研究並進一步探討結合微生物產氫系統與微生物燃料電池的可能性,因此將微生物產氫過程中的副產物:丁酸與醋酸鈉,依不同比例混合進行產電實驗。實驗結果顯示,純丁酸可能不適合微生物產電,但丁酸與乙酸之混合物仍然具有作為微生物燃料電池營養源的潛力。若以Proteus hauseri (ZMd44)作為產電微生物,則以甘油表現最佳,開路電壓為其餘碳源之2倍至4倍。為了驗證上述微流體裝置所得之結果,本研究利用實驗室規模H型微生物燃料電池進行混合族群微生物在不同碳源中的培養與發電測試,以蔗糖作為碳源之產電週期約240小時為最久、電子生成總數約76庫倫為最多。以醋酸鈉作為碳源時則產電週期約100小時為最短與電子生成總數約31庫倫皆為最小。由實驗室規模微生物燃料電池與微流體裝置所得的結果比較,可得知微流體裝置所測得的開路電壓差與H型微生物燃料電池可輸出的電子總量有高度的線性相關,因此證明此微流體裝置可應用於篩選利於微生物燃料電池發電的微生物以及碳源種類,對於未來微生物燃料電池的改進與最佳化有相當大的助益。
關鍵字:無膜式裝置、微流道、微生物燃料電池、碳源
SUMMARY
This study demonstrates the screening of carbon sources for electricity generation by the membraneless microfluidic microbial fuel cell (μMFC) and the corresponding validation in lab-scale H-type MFC. Two kinds of microorganisms are utilized in this study, one is a mixed culture microorganisms obtained from the seacoast of Taiwan and the other is Proteus hauseri (ZMd44). When the mixed culture microorganism was investigated in the μMFC, sucrose resulted in the highest ΔOCV, which was about 120 mV and other carbon sources (acetate, glucose, and glycerol) brought out 50-70 mV. However, glycerol resulted in the highest ΔOCV with ZMd44, which was about 80 mV and the other carbon sources generated ΔOCV around 20-40 mV.
After testing these carbon sources in the μMFC, they were further examined in the lab-scale MFC to validate the results from microfluidic detections. The extracted electron amounts from lab-scale MFC when the mixed culture microorganisms were fed with the above carbon sources were highly correlated (R2=0.99) with the ΔOCV from μMFC. This shows that μMFC can predict the electricity generation in a larger scale setup and has great potential in screening operating conditions for microbial fuel cells.
Keywords:membraneless, microfluidic, microbial fuel cell, carbon sources
1. Potter, M.C., Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 1911: p. 260-276.
2. Cohen, B., The bacterial culture as an electrical half-cell. Journal of Bacteriology, 1931. 21(1): p. 18-19.
3. Logan, B.E., Microbial fuel cells. 2008: John Wiley & Sons.
4. Kim, B.-H., et al., Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens. Journal of microbiology and biotechnology, 1999. 9(2): p. 127-131.
5. Logan, B.E., et al., Microbial fuel cells: methodology and technology. Environmental science & technology, 2006. 40(17): p. 5181-5192.
6. Chen, B.-Y., et al., Assessment upon azo dye decolorization and bioelectricity generation by< i> Proteus hauseri</i>. Bioresource technology, 2010. 101(12): p. 4737-4741.
7. Reguera, G., et al., Extracellular electron transfer via microbial nanowires. Nature, 2005. 435(7045): p. 1098-1101.
8. Gorby, Y.A., et al., Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences, 2006. 103(30): p. 11358-11363.
9. Rabaey, K., et al., Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 2004. 70(9): p. 5373-5382.
10. Rabaey, K., et al., Microbial phenazine production enhances electron transfer in biofuel cells. Environmental science & technology, 2005. 39(9): p. 3401-3408.
11. Park, D.H. and J.G. Zeikus, Electricity generation in microbial fuel cells using neutral red as an electronophore. Applied and environmental microbiology, 2000. 66(4): p. 1292-1297.
12. Bond, D.R., et al., Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002. 295(5554): p. 483-485.
13. Lovley, D.R., Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 2006. 4(7): p. 497-508.
14. Xu, B., et al., Deciphering characteristics of bicyclic aromatics–mediators for reductive decolorization and bioelectricity generation. Bioresource technology, 2014. 163: p. 280-286.
15. Madigan, M.T., Brock Biology of Microorganisms, 11th edn. 2005, SciELO Espana.
16. Bard, A.J. and L.R. Faulkner, Electrochemical methods: fundamentals and applications. Vol. 2. 1980: Wiley New York.
17. Larminie, J., A. Dicks, and M.S. McDonald, Fuel cell systems explained. Vol. 2. 2003: Wiley New York.
18. Kim, J.R., et al., Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental science & technology, 2007. 41(3): p. 1004-1009.
19. Liu, H. and B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental science & technology, 2004. 38(14): p. 4040-4046.
20. Logan, B., et al., Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental science & technology, 2007. 41(9): p. 3341-3346.
21. Lee, S., et al., Effect of initial carbon sources on the electrochemical detection of glucose by< i> Gluconobacter oxydans</i>. Bioelectrochemistry, 2002. 57(2): p. 173-178.
22. Kim, N., et al., Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnology and bioengineering, 2000. 70(1): p. 109-114.
23. Du, Z., H. Li, and T. Gu, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology advances, 2007. 25(5): p. 464-482.
24. Yue, P. and K. Lowther, Enzymatic oxidation of C< sub> 1</sub> compounds in a biochemical fuel cell. The Chemical Engineering Journal, 1986. 33(3): p. B69-B77.
25. Rosenbaum, M., U. Schröder, and F. Scholz, Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions. Journal of Solid State Electrochemistry, 2006. 10(10): p. 872-878.
26. Habermann, W. and E. Pommer, Biological fuel cells with sulphide storage capacity. Applied microbiology and biotechnology, 1991. 35(1): p. 128-133.
27. Ghangrekar, M. and V. Shinde. Microbial fuel cell: a new approach of wastewater treatment with power generation. in International Workshop on R&D Frontiers in Water and Wastewater Management. Nagpur, India. 2006.
28. Chang, I.S., et al., Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosensors and Bioelectronics, 2004. 19(6): p. 607-613.
29. Rodriguez-Mozaz, S., M.J.L. de Alda, and D. Barceló, Biosensors as useful tools for environmental analysis and monitoring. Analytical and bioanalytical chemistry, 2006. 386(4): p. 1025-1041.
30. Chiao, M., et al. A miniaturized microbial fuel cell. in Technical Digest of the 2002 Solid-State Sensors and Actuators Workshop. 2002.
31. Siu, C.-P. and M. Chiao, A microfabricated PDMS microbial fuel cell. Microelectromechanical Systems, Journal of, 2008. 17(6): p. 1329-1341.
32. Qian, F., et al., A 1.5 µL microbial fuel cell for on-chip bioelectricity generation. Lab on a Chip, 2009. 9(21): p. 3076-3081.
33. Wang, H.-Y. and J.-Y. Su, Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism. Bioresource technology, 2013. 145: p. 271-274.
34. Wang, H.-Y., et al., Micro-sized microbial fuel cell: a mini-review. Bioresource technology, 2011. 102(1): p. 235-243.
35. Chen, W.-M., et al., Fermentative hydrogen production with< i> Clostridium butyricum</i> CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 2005. 30(10): p. 1063-1070.