研究生: |
鄭尹瑋 Cheng, Yin-Wei |
---|---|
論文名稱: |
發展摻氮超奈米微晶鑽石塗層石墨與矽作為鋰離子電池負極材料 Development of Nitrogen-incorporated Ultrananocrystalline Diamond Coated Graphite and Silicon as Anode Materials for Lithium Ion Battery |
指導教授: |
劉全璞
Liu, Chuan-Pu |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 石墨 、奈米矽 、奈米碳棒 、摻氮超奈米微晶鑽石 、微波電漿化學氣相沉積 、鋰電池 |
外文關鍵詞: | Graphite, Nano silicon, N-UNCD, MPCVD, Lithium ion battery |
相關次數: | 點閱:90 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究首先通過同步輻射加速器X射線衍射和穿透式電子顯微鏡研究在鋰化/脫鋰化過程中電極材料的結構變化與循環壽命的影響,了解到石墨的非晶化源自周期性體積變化引起的內部應力累積,從而導致強度和韌性降低,同樣的現象在矽更加明顯,之後提出了一種新型的摻氮導電超奈米微晶鑽石塗層(N-UNCD),通過微波等離子增強化學氣相沉積(MPCVD)塗覆在天然石墨(NG)和奈米矽表面,與原始的石墨和原始的奈米矽相比,N-UNCD塗覆的石墨負極和N-UNCD塗覆的奈米矽負極展顯出更優異的循環壽命、快速充放電能力以及有效降低第一圈不可逆電量。N-UNCD膜具有高楊氏係數、高化學穩定性以及高導電性,改善了在充電/放電過程的連續體積變化破壞、更穩定的固態電解質介面(SEI)以及增加奈米矽的導電性。
The aim of this research is to investigate the structural changes and degradation of electrode materials during intercalation/deintercalation leading to reversible capacity loss and short cycle life have plagued LIB from advancing forward. In order to overcome these hurdles, a novel conducting nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) is proposed to coat on the natural graphite (NG) and nano silicon by microwave plasma-enhanced chemical vapor deposition (MPCVD), demonstrating the superior improvement on electrode stability. The electrochemical results of the N-UNCD coated NG anode and N-UNCD coated nano silicon reveal excellent cyclability, rate capability and conductivity over a hundred cycles as compared to the pristine NG and pristine nano silicon. Furthermore, the underlying high structural stability of the N-UNCD coating for the anode material and the failure mechanism of the pristine NG anode is fully elucidated by combining diffraction and imaging techniques based on in-situ synchrotron X-ray diffraction and high-resolution transmission electron microscopy. These results show that the amorphization of NG originates from the accumulation of internal stress by periodic volume changes, which leads to mechanical fading with loss of strength and toughness. However, the N-UNCD film serves as a strong buffer layer to accommodate the volume changes, and also maintains the mechanical integrity of the pristine anode by suppressing from the continuous damage and the thickening of the solid electrolyte interphase during charging/discharging. Optimally, our investigations systematically explain the failure mechanism of the pristine anode, and shed a light on constructing a high capability and long cycle N-UNCD coated anode for LIBs.
[1] B. Dunn, H. Kamath, and J. M. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices," (in English), Science, Review vol. 334, no. 6058, pp. 928-935, Nov 2011.
[2] X. P. Gao and H. X. Yang, "Multi-electron reaction materials for high energy density batteries," (in English), Energy Environ. Sci., Review vol. 3, no. 2, pp. 174-189, 2010.
[3] G. Berckmans, M. Messagie, J. Smekens, N. Omar, L. Vanhaverbeke, and J. Van Mierlo, "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," (in English), Energies, Article vol. 10, no. 9, p. 20, Sep 2017, Art no. 1314.
[4] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," (in English), Nature, Review vol. 414, no. 6861, pp. 359-367, Nov 2001.
[5] M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, "25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries," (in English), Adv. Mater., Review vol. 25, no. 36, pp. 4966-4984, Sep 2013.
[6] X. X. He, "Flexible, Printed and Thin Film Batteries 2019-2029", IDTechEx Research Report. https://www.idtechex.com/en/research-report/flexible-printed-and-thin-film-batteries-2019-2029/634
[7] F. X. Wu, J. Maier, and Y. Yu, "Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries," (in English), Chem. Soc. Rev., Review vol. 49, no. 5, pp. 1569-1614, Mar 2020.
[8] S. T. Myung et al., "Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives," (in English), ACS Energy Lett., Review vol. 2, no. 1, pp. 196-223, Jan 2017.
[9] C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, "Li-alloy based anode materials for Li secondary batteries," (in English), Chem. Soc. Rev., Review vol. 39, no. 8, pp. 3115-3141, 2010.
[10] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, "Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries," (in English), Nature, Article vol. 407, no. 6803, pp. 496-499, Sep 2000.
[11] Y. Yamada, K. Usui, C. H. Chiang, K. Kikuchi, K. Furukawa, and A. Yamada, "General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes," (in English), ACS Appl. Mater. Interfaces, Article vol. 6, no. 14, pp. 10892-10899, Jul 2014.
[12] M. Drue, M. Seyring, and M. Rettenmayr, "Phase formation and microstructure in lithium-carbon intercalation compounds during lithium uptake and release," (in English), J. Power Sources, Article vol. 353, pp. 58-66, Jun 2017.
[13] D. H. Jiao et al., "Improved Lithium Storage Properties of the Reduced Graphene Oxide/Graphite Composites Based on Functional Groups Control Synthesis," (in English), Int. J. Electrochem. Sci., Article vol. 14, no. 1, pp. 848-860, Jan 2019.
[14] H. D. Liu et al., "Elucidating the Limit of Li Insertion into the Spinel Li4Ti5O12," (in English), ACS Mater. Lett., Article vol. 1, no. 1, pp. 96-102, Jul 2019.
[15] J. F. Colin, V. Godbole, and P. Novak, "In situ neutron diffraction study of Li insertion in Li4Ti5O12," (in English), Electrochem. Commun., Article vol. 12, no. 6, pp. 804-807, Jun 2010.
[16] M. B. Pinson and M. Z. Bazant, "Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction," (in English), J. Electrochem. Soc., Article vol. 160, no. 2, pp. A243-A250, 2013.
[17] M. S. Song, R. H. Kim, S. W. Baek, K. S. Lee, K. Park, and A. Benayad, "Is Li4Ti5O12 a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12 electrode and electrolyte," (in English), J. Mater. Chem. A, Article vol. 2, no. 3, pp. 631-636, 2014.
[18] G. R. Goward, N. J. Taylor, D. C. S. Souza, and L. F. Nazar, "The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5," (in English), J. Alloy. Compd., Article vol. 329, no. 1-2, pp. 82-91, Nov 2001.
[19] H. Wu and Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," (in English), Nano Today, Review vol. 7, no. 5, pp. 414-429, Oct 2012.
[20] C. J. Wen and R. A. Huggins, "THERMODYNAMIC STUDY OF THE LITHIUM-TIN SYSTEM," (in English), J. Electrochem. Soc., Article vol. 128, no. 6, pp. 1181-1187, 1981.
[21] C. Lupu, J. G. Mao, J. W. Rabalais, A. M. Guloy, and J. W. Richardson, "X-ray and neutron diffraction studies on "Li4.4Sn"," (in English), Inorg. Chem., Article vol. 42, no. 12, pp. 3765-3771, Jun 2003.
[22] A. D. W. Todd, P. P. Ferguson, M. D. Fleischauer, and J. R. Dahn, "Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods," (in English), Int. J. Energy Res., Article vol. 34, no. 6, pp. 535-555, May 2010.
[23] F. X. Xin et al., "Nanocrystal Conversion-Assisted Design of Sn-Fe Alloy with a Core-Shell Structure as High-Performance Anodes for Lithium-Ion Batteries," (in English), ACS Omega, Article vol. 4, no. 3, pp. 4888-4895, Mar 2019.
[24] L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, and J. R. Dahn, "Reaction of Li with alloy thin films studied by in situ AFM," (in English), J. Electrochem. Soc., Article vol. 150, no. 11, pp. A1457-A1464, Nov 2003.
[25] H. Mukaibo, T. Momma, Y. Shacham-Diamand, T. Osaka, and M. Kodaira, "In situ stress transition observations of electrodeposited Sn-based anode materials for lithium-ion secondary batteries," (in English), Electrochem. Solid State Lett., Article vol. 10, no. 3, pp. A70-A73, 2007.
[26] J. B. Pang et al., "Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices," (in English), Adv. Energy Mater., Review vol. 8, no. 8, p. 43, Mar 2018, Art no. 1702093.
[27] C. M. Park and H. J. Sohn, "Black phosphorus and its composite for lithium rechargeable batteries," (in English), Adv. Mater., Article vol. 19, no. 18, pp. 2465-+, Sep 2007.
[28] X. H. Chen et al., "A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors," (in English), J. Mater. Chem. A, Article vol. 5, no. 14, pp. 6581-6588, Apr 2017.
[29] J. S. Li, C. X. Guo, and C. M. Li, "Recent Advances of Two-Dimensional (2 D) MXenes and Phosphorene for High-Performance Rechargeable Batteries," (in English), ChemSusChem, Review vol. 13, no. 6, pp. 1047-1070, Mar 2020.
[30] S. H. Yu, S. H. Lee, D. J. Lee, Y. E. Sung, and T. Hyeon, "Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes," (in English), Small, Review vol. 12, no. 16, pp. 2146-2172, Apr 2016.
[31] H. B. Wu, J. S. Chen, H. H. Hng, and X. W. Lou, "Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries," (in English), Nanoscale, Article vol. 4, no. 8, pp. 2526-2542, 2012.
[32] I. A. Courtney and J. R. Dahn, "Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass," (in English), J. Electrochem. Soc., Article vol. 144, no. 9, pp. 2943-2948, Sep 1997.
[33] Z. C. Yang, J. G. Shen, and L. A. Archer, "An in situ method of creating metal oxide-carbon composites and their application as anode materials for lithium-ion batteries," (in English), J. Mater. Chem., Article vol. 21, no. 30, pp. 11092-11097, 2011.
[34] Z. H. Liu et al., "Silicon oxides: a promising family of anode materials for lithium-ion batteries," (in English), Chem. Soc. Rev., Review vol. 48, no. 1, pp. 285-309, Jan 2019.
[35] M. M. Zhao, Q. X. Zhao, J. Q. Qiu, H. G. Xue, and H. Pang, "Tin-based nanomaterials for electrochemical energy storage," (in English), RSC Adv., Review vol. 6, no. 98, pp. 95449-95468, 2016.
[36] A. Hirata et al., "Atomic-scale disproportionation in amorphous silicon monoxide," (in English), Nat. Commun., Article vol. 7, p. 7, May 2016, Art no. 11591.
[37] S. C. Jung, H. J. Kim, J. H. Kim, and Y. K. Han, "Atomic-Level Understanding toward a High-Capacity and High Power Silicon Oxide (SiO) Material," (in English), J. Phys. Chem. C, Article vol. 120, no. 2, pp. 886-892, Jan 2016.
[38] M. Salah, P. Murphy, C. Hall, C. Francis, R. Kerr, and M. Fabretto, "Pure silicon thin-film anodes for lithium-ion batteries: A review," (in English), J. Power Sources, Review vol. 414, pp. 48-67, Feb 2019.
[39] N. Spinner, L. C. Zhang, and W. E. Mustain, "Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM," (in English), J. Mater. Chem. A, Article vol. 2, no. 6, pp. 1627-1630, 2014.
[40] P. Li et al., "Recent progress on silicon-based anode materials for practical lithium-ion battery applications," (in English), Energy Storage Mater., Review vol. 15, pp. 422-446, Nov 2018.
[41] O. Auciello et al., "Materials science and fabrication processes for a new MEMS technoloey based on ultrananocrystalline diamond thin films," (in English), J Phys-Condens Mat, vol. 16, no. 16, pp. R539-R552, Apr 28 2004.
[42] Q. Fang, W. Xu, H. Lei, C. Y. Xu, B. Zhang, and D. B. Zhu, "Synthesis and characterization of highly conducting PyH[Pd(dmit)(2)](2) crystal," (in English), Inorg Chem Commun, vol. 7, no. 10, pp. 1157-1160, Oct 2004.
[43] S. Al-Riyami, S. Ohmagari, and T. Yoshitake, "X-ray photoemission spectroscopy of nitrogen-doped UNCD/a-C:H films prepared by pulsed laser deposition," (in English), Diam Relat Mater, vol. 19, no. 5-6, pp. 510-513, May-Jun 2010.
[44] P. Zapol, M. Sternberg, L. A. Curtiss, T. Frauenheim, and D. M. Gruen, "Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries," (in English), Physical Review B, vol. 65, no. 4, Jan 15 2002.
[45] A. V. Karabutov, V. D. Frolov, and V. I. Konov, "Diamond/sp(2)-bonded carbon structures: quantum well field electron emission?," (in English), Diam Relat Mater, vol. 10, no. 3-7, pp. 840-846, Mar-Jul 2001.
[46] D. J. Garrett, K. Ganesan, A. Stacey, K. Fox, H. Meffin, and S. Prawer, "Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications," J Neural Eng, vol. 9, no. 1, p. 016002, Feb 2012.
[47] S. Negi, R. Bhandari, L. Rieth, R. Van Wagenen, and F. Solzbacher, "Neural electrode degradation from continuous electrical stimulation: Comparison of sputtered and activated iridium oxide," (in English), J Neurosci Meth, vol. 186, no. 1, pp. 8-17, Jan 30 2010.
[48] P. Bergonzo et al., "3D shaped mechanically flexible diamond microelectrode arrays for eye implant applications: The MEDINAS project," (in English), Irbm, vol. 32, no. 2, pp. 91-94, Apr 2011.
[49] T. Zimmermann et al., "Ultra-nano-crystalline/single crystal diamond heterostructure diode," (in English), Diam Relat Mater, vol. 14, no. 3-7, pp. 416-420, Mar-Jul 2005.
[50] J. E. Gerbi, O. Auciello, J. Birrell, D. M. Gruen, B. W. Alphenaar, and J. A. Carlisle, "Electrical contacts to ultrananocrystalline diamond," (in English), Applied Physics Letters, vol. 83, no. 10, pp. 2001-2003, Sep 8 2003.
[51] G. Pistoia, Lithium batteries: new materials, developments, and perspectives, Elsevier 1994, pp. 1.
[52] R.R. Hao, Q.L. Zhang, and P.W. Shen, Carbon Silicon and Germanium Branch of Inorganic Chemistry Series, Science Press, Beijing 1998, pp. 3–26.
[53] J.P. Shim, K.A. Striebel, J. Power Sources 130 (2004) 247-253
[54] K. Xu, Chem. Rev. 114 (2014) 11503-11618
[55] S.J. An, J.L. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, Carbon 105 (2016) 52-76
[56] Y.W. Cheng, C.K. Lin, Y.C. Chu, A. Abouimrance, Z.H. Chen, Y. Ren, C.P. Liu, Y.H. Tzneg, O. Auciello, Adv. Mater. 26 (2014) 3724-3729
[57] D. Lee, B. Kim, J. Kim, S. Jeong, G. Cao, J. Moon, ACS Appl. Mater. Interfaces, 7 (2015) 27234-27241
[58] C. Wang, I. Kakwan, A. J. Appleby, F. E. Little, J. Electroanal. Chem., 489 (2000), 55-67
[59] J. Zhao, X. X. Zou, Y. J. Zhu, Y. H. Xu, C. S. Wang, Adv. Funct. Mater., 26 (2016) 8103-8110
[60] L. Seidl, S. Martens, J. W. Ma, U. Stimming, O. Schneider, Nanoscale, 8 (2016) 14004-14014.
[61] Y. S. Ding et al., Surf. Coat. Technol., 200 (2006) 3041-3048
[62] H. L. Zhang et al., Carbon, 44 (2006)2212-2218
[63] H. P. Zhao, J. G. Ren, X. M. He, J. J. Li, C. Y. Jiang, and C. R. Wan, Electrochim. Acta, 52 (2007) 6006-6011
[64] R. Yuge, N. Tamura, T. Manako, K. Nakano, and K. Nakahara, J. Power Sources, 266 (2014) 471-474
[65] K. J Kim, T. S. Lee, H. G. Kim, S. H. Lim, S. M. Lee, Electrochim. Acta, 135, (2014) 27-34
[66] S. Bhattacharya, A.R. Riahi, A.T. Alpas, Scripta Mater. 64 (2011) 165-168.
[67] K. Minowa, K. Sumino, Phys. Rev. Lett. 69 (1992) 320-322.
[68] Z.J. Lin, M.J. Zhuo, Z.Q. Sun, P. Veyssiere, Y.C. Zhou, Acta Mater. 57 (2009) 2851-2857
[69] J. R. Szczech and S. Jin, "Nanostructured silicon for high capacity lithium battery anodes," Energy Environ. Sci., vol. 4, no. 1, pp. 56-72, 2011, doi: 10.1039/c0ee00281j
[70] X. S. Zhou, Y. X. Yin, L. J. Wan, and Y. G. Guo, "Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries," (in English), Adv Energy Mater, vol. 2, no. 9, pp. 1086-1090, Sep 2012, doi: 10.1002/aenm.201200158.
[71] Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, and Y. Cui, "Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes," Nature Energy, vol. 1, no. 2, p. 15029, 2016, doi: 10.1038/nenergy.2015.29.
[72] O. Auciello and A. V. Sumant, "Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices," Diam Relat Mater, vol. 19, no. 7-9, pp. 699-718, 2010, doi: 10.1016/j.diamond.2010.03.015