| 研究生: |
蔡名琨 Tsai, Ming-Qun |
|---|---|
| 論文名稱: |
碳化矽/碳微奈米複合薄膜製程與性質檢測之研究 A study on the fabrication and properties analysis of SiC/C micro-nano composite films |
| 指導教授: |
鍾震桂
chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 溫度 、碳化矽 、複合薄膜 、碳/矽 |
| 外文關鍵詞: | silicon carbide, composite films, temperature, carbon/silicon |
| 相關次數: | 點閱:87 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究乃是利用超高真空離子束濺鍍系統成長出堆疊式的碳/矽奈米複合薄膜,同時進行不同基板溫度與退火溫度的實驗。探討堆疊式的碳/矽奈米複合薄膜的製程反應、成分比例、微奈米結構、溫度與機械性質的關係。未來可應用到微小精密機械與機電元件的表層改質披覆。實驗分兩部份,從單層薄膜到多層碳/矽複合薄膜的研究。
由於超高真空離子束濺鍍系統的沉積以時間為單位,故在沉積碳膜與矽膜之前,須先知道各元素的沉積速率,以利複合薄膜的厚度控制。實驗結果發現矽膜的沉積速率比碳膜的沉積速率高,這是因為碳的鍵結強度較高所致。此外,探討不同基板溫度對碳化矽成長的影響,結果發現,40nm的碳膜隨著基板溫度的增加,會有微小碳晶體(nanocrystalline graphite)的產生。當基板溫度為600℃時,碳與矽開始產生碳化矽,而當基板溫度達700℃時,碳與矽完全反應形成碳化矽,且完全反應的碳化矽平整度不錯。另外,在一般溫度下沉積多層碳/矽微奈米複合薄膜,而後進行真空退火處理,探討不同真空退火溫度下,薄膜結構與機械性質的關係。
堆疊式薄膜分為兩組,第一、探討相同總厚度的單層碳膜與雙層碳/矽複合薄膜在相同高溫,不同真空退火時間下,反應結構與機械性質的關係。結果發現,單層碳膜的硬度比雙層碳/矽複合薄膜高,這主要是碳膜的硬度比矽膜高所致。而兩者皆隨著退火時間增加,硬度皆下降,這主要是碳膜易受溫度影響而產生石墨化。第二,探討相同總厚度的三層碳/矽[a]複合薄膜(Si/C/Si=50/200/50 nm)、三層碳/矽[b]複合薄膜(Si/C/Si=75/150/75 nm)與五層碳/矽複合薄膜(Si/C/Si/C/Si=30/105/30/105/30 nm) 在不同真空退火溫度,相同真空退火時間下,反應結構與機械性質的關係。結果發現,當真空退火溫度在700℃時,硬度值有提高的現象,這可能是在700℃時產生的碳化矽造成的。當真空退火溫度達900℃時,三層碳/矽複合薄膜與五層碳/矽複合薄膜的表面粗糙度皆明顯變化,這主要是多層薄膜中的矽因受溫度影響,產生過度結晶化的結果。此外,實驗發現五層碳/矽複合薄膜與三層碳/矽[a]複合薄膜(Si/C/Si=50/200/50 nm)的硬度比三層碳/矽[b]複合薄膜(Si/C/Si=75/150/75 nm)高,這與薄膜中碳與矽佔有的比例較高有關。此外,五層碳/矽複合薄膜的楊氏係數也比三層碳/矽複合薄膜高,可提高材料的剛性,降低材料外力變形量。可見調整多層複合薄膜的厚度與層數,可以改善材料的許多機械性質。
The layer-by-layer carbon/silicon micro-nanocomposite films are deposited by ultra high vacuum ion beam sputtering system (UHV IBS) under different substrate temperature or at room temperature together with post vacuum annealing. The relations between deposition procedures, composition, micro-nano structure, temperature and mechanical properties are established after process and material analysis in this thesis. They are potentially used in the application of the surface modification of precision mechanics or micro electromechanical devices. The experiments are divided into two parts of single layer film and carbon/silicon multilayer film.
The results of deposition rate calibration show that the deposition rate of silicon film is higher than carbon film. The reason is the bonding strength of carbon higher than silicon. 40 nm carbon films deposited on silicon wafers at different temperatures are used to study the substrate’s temperature effect on the reaction of carbon to silicon. The results show the DLC begins to form nanocrystalline graphite (“glassy” carbon) when temperature increases. When substrate’s temperature is at 600 ℃, the carbon film begins to form silicon carbide. And when substrate’s temperature increases to 700℃, carbon and silicon react completely and the its topography is smooth. In addition, carbon/silicon micro-nanocomposite films were deposited at room temperature and then done by a series of post vacuum annealing to study the relation between films’ structure and mechanical properties at varied vacuum annealing temperature.
Two kinds of layer-by-layer films were prepared. First, single carbon film and two-layers carbon/silicon composite film were annealed at the same temperature and different time to study the relations of the structure and mechanical properties. The results show that the hardness of single carbon film is higher than two-layers carbon/silicon composite film due to the higher hardness of carbon film than silicon film. Both of the films decrease their hardness a little when annealing time increases. The reason is that carbon film is easy to graphitize at high temperature with increasing time. Second, three-layers carbon/silicon [a] composite films (Si/C/Si=50/200/50 nm), three-layers carbon/silicon [b] composite films (Si/C/Si=75/150/75 nm) and five-layers carbon/silicon composite films (Si/C/Si/C/Si=30/105/30/105/30 nm) were annealed at different temperature with the same time to study the relations of structure and mechanical properties. The results show the hardness is to increase when vacuum annealing temperature keeps at 700℃. The may be caused by the appearance of silicon carbide at 700℃. When vacuum annealing temperature increase to 900℃, the roughness of three-layers and five-layers carbon/silicon composite films increase obviously. It is caused by more crystallization of Si films in the multilayers at high temperature. The hardness of five-layer carbon/silicon composite films (Si/C/Si/C/Si=30/105/30/105/30 nm) and three-layers [a] carbon/silicon composite films (Si/C/Si=50/200/50 nm) are higher than three-layers [b] carbon/silicon composite films (Si/C/Si=75/150/75 nm). This is due to the total amount of carbon film and silicon film in the multilayer. In addition, the elastic modulus of five-layer carbon/silicon composite films is higher than three-layer carbon/silicon composite films to enhance the stiffness of materials. It is possible to promote the mechanical properties using multilayer composite structure by controlling the layer thickness and number.
Reference
1. R. Feynman, “There’s Plenty of room at the bottom”, a talk at the annual meeting of the American Physical Society (Caltech, 1959).
2. H. Gleiter, “On the structure of grain boundaries in metals”, Mater. Sci. Eng.52, 91(1982).
3. Mejram Mejregany and Christian A. Zorman, “SiC MEMS: opportunities and challenges for applications in harsh environments”, Thin Solid Films 355-356, pp.518-524, 1999.
4. Pasqualina M. Sarro, “Silicon carbide as a new MEMS technology”, Sensors and Actuators 82, pp.210-218, 2000.
5. Conrad R. Stoldt, Carlo Carraro, W. Robert Ashurst, Di Gao, Roger T. Howe and Roya Maboudian, “A low-temperature CVD process for silicon carbide MEMS”, Sensors and Actuators A 97-98, pp.410-415, 2002.
6. Mingjiang Dai, Kesong Zhou, Zhenghai Yuan, Qian Ding and Zhiqiang Fu, “The cuttings performance of diamond and DLC-coated cutting tools”, Diamond and Related Materials 9, pp.1753-1757, 2000.
7. H. Voigt, F. Schitthelm, T. Lange, T. Kullick and R. Ferretti, “Diamond-like carbon-gate PH-ISFET”, Sensors and Actuators B, pp. 441-445, 1997.
8. 張力德,牟季美,納米材料和納米結構,科學出版社,北京,2001。
9. William D. Callister, Jr, “Fundamentals of materials science and engineering”, John Wiley & Sons, Inc., New York, pp.206-208, 2001.
10. S. Veprek, M. Haussmann, S. Reiprich, L. Shizhi and J. Dian, “Novel thermodynamically stable and oxidation resistant superhard coating materials”, Surface and Coatings Technology 86-87, pp.394-401, 1996.
11. Jorg Patscheider, Thomas Zehnder and Matthieu Diserens, “Structure-performance relations in nanocomposite coatings”, Surface and Coatings Technology 146-147, pp. 201-208, 2001.
12. M. Ohring, The materials science of thin films, Academic Press, San Diego, p. 409, 1992.
13. Nieman GW, Weerlman J R, Siegel R W, Scripta Metall. et Mater., 34,145, 1990.
14. Lu K, Wei WD, Wang J T, Scripta Metall. et Mater., 24, 2319, 1990.
15. Palumbo G, Thorpe S J, Aust K T, Scripta Metall. et Mater., 24, 1347, 1990.
16. M. G. Gee, B. Roebuck, P. Lindahl and H.O. Andren, Mater. Sci. Eng. A209, 128, 1996.
17. Y. V. Milman, S. Luyckx and I.T. Northrop, Int. J. Refract. Met. & Hard Mater. 17, 39, 1999.
18. W. D. Schubert, H. Neumeister, G. Kinger and B.Lux, Int. J. Refract. Met. & Hard Mater. 16, 133, 1998.
19. K. Jia, T.E. Fischer and B. Gallois, Nanostruct.Mater. 10, 875, 1998.
20. W. C. Oliver and G. M. Pharr, “ An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol.7, No. 6, pp.1564-1583, 1992.
21. S. Veprek and Ali S. Argon, “Mechanical properties of superhard nanocomposites”, Surface and Coatings Technology 146-147, pp.175-182, 2001.
22. J. Musil, F. Kunc, H. Zeman and H. Polakova, “Relationships between hardness, Elastic modulus and elastic recovery in hard nanocomposite coatings”, Surface and Coatings Technology 154, pp.304-313, 2002.
23. Xiaodong Li and Bharat Bhushan, “Measurement of fracture toughness of ultra-thin amorphous carbon films”, Thin Solid Films 315, pp.214–221, 1998.
24. Xiaodong Li, Dongfeng Diao and Bharat Bhushan, “Fracture mechanisms of thin amorphous carbon films in nanoindentation”, Acta mater. Vol. 45, No.11, pp.4453-4461, 1997.
25. B. Bhushan, Handbook of micro / nanotribology, 2nd ed. CRC Press, Boca Raton, 1999.
26. M. Ben Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, and Ph. Houdy, J. Appl. Phys. 87, 7753, 2000.
27. M. Eckel, G. Kampschulte and P. Markschlager, “Improvements in a-C film properties by metal incorporation and intermediate layers”, Surface and Coatings Technology 74-75, pp. 827-832, 1995.
28. Wan-yu Wu and Jhy-ming Ting, “Growth and characteristics of carbon films with nano-sized metal particle”, Thin Solid Films 420-421, pp.166-171, 2002.
29. P. Papakonstantinou, J.F. Zhao, P. Lemoine, E.T. Mchadams and J.A. MchLaughlin, “The effects of Si incorporation on the electrochemical and nanomechanical properties of DLC thin films”, Diamond and Related Materials 11, pp.1074-1080, 2002.
30. Weng-Jin Wu and Min-Hsiung Hon, “Thermal stability of diamond-like films with added silicon”, Surface and Coatings Technology 11, pp. 134-140, 1999.
31. B.G. Kim, Y.W. Lee, J.W. Lee and Y. Choi, “Formation mechanism of C/SiC/C multi-layers during self-propagating high-temperature synthesis”, Surface and Coatings Technology 151-152, pp.26-30, 2002.
32. Takuya Aoki, Hiroshi Hatta, Taku Hitomi, Hiroshi Fukuda and Ichiro Shiota, “SiC/C multi-layered coating contributing to the antioxidation of C/C composites and the suppression of through-thickness cracks in the layer”, Carbon 39, pp.1477-1483, 2001.
33. Naoto Kikuchi, Eiji Kusano, Tatsuya Tanaka, Akira Kinbara and Hidehito Nanto, “Preparation of amorphous Si1-xCx(0<x<1) films by alternate deposition of Si and C thin layers using a dual magnetron sputtering source”, Surface and Coatings Technology 149, pp.76-81, 2002.
34. I. N. Sneddon, Int. J. Engng Sci., Vol.3, pp.47, 1965.
35. G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation”, J. Mater. Res., Vol.7, pp.613-617, 1992.
36. R. B. King, “Elastic analysis of some punch problems for a layered medium”, Int. J. Solids Structure, Vol.23, No.12, pp.1657-1664, 1987.
37. W. C. Oliver and G. M. Pharr, “ An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol.7, No. 6,pp.1564-1583, 1992.
38. D. Gordon, “Properties and Growth of Diamond”, INSPEC, the Institution of Electrical Engineers, London, United Kindom, 1994.
39. 經濟部工業局,工業技術人才培訓講義-AFM原子力顯微鏡技術,國立成功大學,2003。
40. 汪建民,材料分析,中國材料科學學會,民全書局,2001。
41. 施孟君,何恕德,林鶴南,陳維釧,吳信田,基材效應對薄膜奈米壓痕量測之影響,國立清華大學材料科學工程學系,2002。
42. Xing-zhao Ding, Fu-min Zhang, Xiang-Huai Liu, P.W. Wang, W.G. Durrer, W.Y. Cheung, S.P. Wong and I.H. Wilson, “Ion beam assisted deposition of diamond-like nanocomposite films in an acetylene atmosphere”, Thin Solid Films 346, pp.82-85, 1999.
43. Sung-Jin Cho, Kwang-Ryeol Lee, Kwang Yong Eun, Jun Hee Hahn and Dac-Hong Ko, “Determination of elastic modulus and Poisson’s ratio of diamond-like carbon films”, Thin Solid Films 341, pp.207-210, 1999.