| 研究生: |
賴柏諺 Lai, Bo-Yan |
|---|---|
| 論文名稱: |
物流績效指數之國際地理依存性 Geographical Dependence Observed in the Logistics Performance Index |
| 指導教授: |
林珮珺
Lin, Pei-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 物流績效指標 、空間依存性 、空間統計分析 、空間計量經濟模型 |
| 外文關鍵詞: | Logistics Performance Index, Spatial dependency, Spatial statistics analysis, Spatial econometrics analysis, Spatial regression model |
| 相關次數: | 點閱:244 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探索的主題為物流績效指標在國際地理環境下是否具有空間依存性,同時以人均GDP做為國家富裕程度的資料,驗證與物流績效指標之間的相關性。據世界銀行公佈的資料,全球各國的物流績效指標,從分佈觀察發現,物流績效指標程度高的國家多為彼此相鄰,反之亦是,為了能夠實證物流績效指標空間依存性,本研究使用ArcGIS軟體進行探索性空間資料分析驗證物流績效指標是否符合本研究之假設,物流績效指標具有空間依存性。確立了物流績效指標有空間依存性後,再進一步運用空間計量經濟學提供的空間迴歸模型進一步分析探討各國家與的物流績效指標與鄰國之間的空間交互作用,並說明物流績效指標的空間資料特性,空間迴歸模型主要包括空間落遲模型(Spatial Lag Model)、空間誤差模型(Spatial Error Mode)以及空間Durbin模型(Spatial Durbin Model)。研究結果顯示,發現本研究資料的空間特性皆符合空間落遲模型、空間Durbin模型以及空間誤差模型分析結果,這代表一國家的物流績效指標會與鄰國物流績效指標之間具有相關性之外,同時鄰國的人均GDP也會與該國家物流績效指標有有關性,此也驗證了空間外溢效應存在。另外根據空間誤差模型結果表示,本研究藉由國家的富裕程度來解釋物流能力表現而言來說是不夠的,應還存有其他隱藏的變數使一國與鄰國的物流能力之間皆受到共同的影響。建議後續研究者可以深入探討尚未被發掘之隱藏變數,並觀察變數加入空間迴歸模型後分析結果的改變,並提供政策制定者能夠提升物流能力表現之建議方向。
This research aims to explore whether the logistics performance index (LPI) has spatial dependence in the international geographical environment and use the GDP per capita to verify the correlation with the LPI. Our research collect the World Bank published data. We discover the global LPI’s distribution express a phenomenon that is when the country has a high degree of LPI, the adjacent countries also has a high degree of LPI and vice versa. In order to demonstrate the LPI has a spatial dependence, this study uses Arcgis for exploratory spatial data analysis to verify that LPI is consistent with the hypothesis of this study. After determining the spatial dependency of LPI, we use the spatial regression model to further analyze the LPI’s spatial interaction between the country and its neighboring countries, as well as explain the spatial characteristics of LPI. The spatial regression model mainly includes Spatial Lag Model, Spatial Error Model and Spatial Durbin Model. The empirical results show that the spatial characteristics of the LPI are consistent with a Spatial regression model, which means that a country's LPI will be related to neighboring countries' LPI. While the GDP per capita of neighboring countries will also be related to the country's LPI, also verify the spatial spillover effect exist. Also, according to the results of the Spatial Error Model, only use the richness of the country to explain the performance of the logistics capacity is not enough. There should be other hidden variables that make the logistics capacity of a country, and its neighbors affected influence. Suggested that follow-up researchers can explore the hidden variables that and observe the changes in the results of the variables after adding the spatial regression model try to provide the direction of the policy makers to enhance the performance of the logistics capacity.
中文部分
1.交通部運輸研究所,2011。APEC推動供應鏈連結運輸部門之因應與配合初探。
2.許禎育、張宏浩,2010。臺灣農家之農業所得的空間依存性分析。農業經濟叢刊,第十六卷,第一期,第79-108頁。
3.張秀玲,2000。整合空間統計技術之土地大量估價方法之研究。國立成功大學都市計劃研究所碩士論文。
4.謝純瑩、周國屏,2002。應用空間自相關分析於人口老化時空變遷之研究。人口學刊,第二十五卷,第91-119頁。
英文部分
1.Ades, A., & Chua, H. B. (1997). Thy neighbor's curse: regional instability and economic growth. Journal of Economic Growth, 2(3), 279-304.
2.Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
3.Arvis, J. F., Saslavsky, D., Ojala, L., Shepherd, B., Busch, C., Raj, A., & Naula, T. (2016). Connecting to compete 2016: trade logistics in the global economy. The Logistics Performance Index and Its Indicators, Washington DC: The World Bank.
4.Arvis, J. F., Saslavsky, D., Ojala, L., Shepherd, B., Busch, C., & Raj, A. (2014). Connecting to compete 2014: trade logistics in the global economy. The Logistics Performance Index and Its Indicators, Washington DC: The World Bank.
5.Arvis, J. F., Mustra, M. A., Ojala, L., Shepherd, B., & Saslavsky, D. (2012). Connecting to compete 2012: trade logistics in the global economy. The Logistics Performance Index and Its Indicators, Washington DC: The World Bank.
6.Arvis, J. F. (2010). Connecting to compete 2010: trade logistics in the global economy. The Logistics Performance Index and Its Indicators, Washington DC: The World Bank.
7.Anselin, L. (1988). Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical analysis, 20(1), 1-17.
8.Anselin, Luc. (1989). What is Special About Spatial Data? Alternative Perspectives on Spatial Data Analysis (89-4). UC Santa Barbara: National Center for Geographic Information and Analysis. Retrieved from: http://escholarship.org/uc/item/3ph5k0d4.
9.Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93-115.
10.Anselin, L., & Florax, R. J. (1995). New Directions in Spatial Econometrics: Small sample properties of tests for spatial dependence in regression models some further results. Berlin: Springer.
11.Anselin, L., Varga, A., & Acs, Z. (1997). Local geographic spillovers between university research and high technology innovations. Journal of urban economics, 42(3), 422-448.
12.Anselin, L. (2010). Thirty years of spatial econometrics. Papers in Regional Science, 89(1), 3-25.
13.Anselin, L. (2013). Spatial Econometrics: Methods and Models (Vol. 4), Berlin: Springer Science & Business Media.
14.Baller, R. D., Anselin, L., Messner, S. F., Deane, G., & Hawkins, D. F. (2001). Structural covariates of US county homicide rates: incorporating spatial effects. Criminology, 39(3), 561-588.
15.Baltagi, B. (2013). Econometric analysis of panel data, 5th Edition. Chichester: Wiley.
16.Bennett, R. J., & Bennett, R. J. (1979). Spatial Time Series: Analysis-forecasting-control. London: Pion.
17.Bottasso, A., Conti, M., Ferrari, C., & Tei, A. (2014). Ports and regional development: a spatial analysis on a panel of European regions. Transportation Research Part A: Policy and Practice, 65, 44-55.
18.Brandenburger, A. M., & Nalebuff, B. J. (2011). Co-opetition. Crown Business.
19.Chin, A., & Junjie, H. (2005). The Location Decisions of Foreign Logistics Firms in China: Does Transport Network Capacity Matter?, SCAPE.
20.Chhetri, P., Butcher, T., & Corbitt, B. (2014). Characterising spatial logistics employment clusters. International Journal of Physical Distribution & Logistics Management, 44(3), 221-241.
21.Çelebi, Ü., Civelek, M. E., & Çemberci, M. (2015). The mediator effect of foreign direct investments on the relation between logistics performance and economic growth. Journal of Global Strategic Management, 9(1), 17-21.
22.Condeco-Melhorado, A., Gutiérrez, J., & García-Palomares, J. C. (2011). Spatial impacts of road pricing: Accessibility, regional spillovers and territorial cohesion. Transportation Research Part A: Policy and Practice, 45(3), 185-203.
23.Elhorst, J. P. (2013). Spatial Econometrics: From Cross-Sectional Data to Spatial Panels: Springer Science & Business Media.
24.Foster, S. A., & Gorr, W. L. (1986). An adaptive filter for estimating spatially-varying parameters: application to modeling police hours spent in response to calls for service. Management Science, 32(7), 878-889.
25.Getis, A., & Boots, B. N. (1978). Models of Spatial Processes: an approach to the study of point, line and area patterns. Cambridge: Cambridge University Press.
26.Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189-206.
27.Getis, A., & Aldstadt, J. (2010). Perspectives on Spatial Data analysis: Constructing the spatial weights matrix using a local statistic. Berlin: Springer.
28.Gleditsch, K. S., & Ward, M. D. (2001). Measuring space: a minimum-distance database and applications to international studies. Journal of Peace Research, 38(6), 739-758.
29.Goh, M., & Ang, A. (2000). Some logistics realities in Indochina. International Journal of Physical Distribution & Logistics Management, 30(10), 887-911.
30.Haining, R. (1993). Spatial Data Analysis in the Social and Environmental Sciences. Cambridge: Cambridge University Press.
31.Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. Academic press.
32.Le Gallo, J., & Ertur, C. (2003). Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980−1995. Papers in Regional Science, 82(2), 175-201.
33.LeSage, J., & Pace, R. K. (2009). Introduction to Spatial Econometrics: CRC Press.
34.Marshall, A. (2009). Principles of Economics: Unabridged Eighth Edition. Cosimo. New York: Cosimo Classics.
35.Martí, L., Puertas, R., & García, L. (2014). The importance of the Logistics Performance Index in international trade. Applied Economics, 46(24), 2982-2992.
36.Mariano, E. B., Gobbo, J. A., de Castro Camioto, F., & do Nascimento Rebelatto, D. A. (2016). CO 2 emissions and logistics performance: a composite index proposal. Journal of Cleaner Production.
37.Murdoch, J. C., & Sandler, T. (2002). Economic growth, civil wars, and spatial spillovers. Journal of Conflict Resolution, 46(1), 91-110.
38.Murdoch, J. C., & Sandler, T. (2004). Civil wars and economic growth: spatial dispersion. American Journal of Political Science, 48(1), 138-151.
39.Niebuhr, A. (2006). Market access and regional disparities. The Annals of Regional Science, 40(2), 313-334.
40.Ojala, L., & Çelebi, D. (2015). The World Bank’s Logistics Performance Index(LPI) and drivers of logistics performance, the Roundtable on Logistics Development Strategies and their Performance Measurements, OECD.
41.Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27(4), 286-306.
42.Puga, D. (1999). The rise and fall of regional inequalities. European economic review, 43(2), 303-334.
43.Puga, D. (2002). European regional policies in light of recent location theories. Journal of economic geography, 2(4), 373-406.
44.Quah, D. T. (1996). Regional convergence clusters across Europe. European Economic Review, 40(3), 951-958.
45.Ratliff, D., & Ramudhin, A. (2012). Logistics Investment and Trade Growth: The Need for Better Analytics. In: RZ Lawrence, M. Drzeniek-Hanouz, S. Doherty (ed.), The Global Enabling Trade Report 2012.
46.Richardson, L. F. (1960). Statistics of Deadly Quarrels. San Francisco: Boxwood Pr.
47.Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464.
48.Sheffi, Y. (2012). Logistics clusters: delivering value and driving growth. Mit Press.
49.Shu, L., Jiang, W., & Tsui, K. L. (2012). A standardized scan statistic for detecting spatial clusters with estimated parameters. Naval Research Logistics (NRL), 59(6), 397-410.
50.Tobler, W. R. (1979). Cellular Geography. Houten: Springer Netherlands.
51.Tukey, J. W. (1977). Exploratory data analysis. London: Pearson.
52.Vega, S. H., & Elhorst, J. P. (2013, February). On spatial econometric models, spillover effects, and W. In 53rd ERSA Congress, Palermo, Italy.
53.Wartenberg, D. (1985). Multivariate spatial correlation: a method for exploratory geographical analysis. Geographical Analysis, 17(4), 263-283.
54.Yildiz, T. (2015). An empirical study on the relationship between logistics performance and education. Business, Management and Education, 13(2), 249-275.
校內:2022-06-01公開