| 研究生: |
郭敏謙 Kuo, Min-Chien |
|---|---|
| 論文名稱: |
應用高能物質於混合火箭藥柱之研究 Research on the Packing of Energetic Materials as Applied in Hybrid Rocket Fuel Grain |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 混合火箭 、高能物質 、鋁粉 、界面活性劑 |
| 外文關鍵詞: | Hybrid Rocket, Energetic Materials, Aluminum Powder, Surfactant |
| 相關次數: | 點閱:107 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,混合火箭在太空推進學術研究與應用上,漸漸受到廣泛的興趣與重視。除了可以用以量測大氣資料外,也可以利用混合火箭做電子酬載的驗證與開發。混合火箭的研究,改善了過去固態火箭在燃料操作控制上的問題,及避免了液態火箭在儲存上的缺點,讓火箭在開發與研究上,變得更安全,成本也更低。混合火箭雖有以上的優點,但燃料退縮率的不足卻是應用上最大的限制。有鑑於此,過去有許多關於改善藥柱退縮率的研究與方法,包括採用漩渦噴注器、改變藥柱成分、流道形狀,以及添加高能物質等。本研究利用安全性較高,平均粒徑在3μm之微米級鋁粉,添加入石蠟/HTPB藥柱中,並加入Span-85之界面活性劑幫助粉末分散,搭配過去研究之漩渦式噴注,提升該型藥柱的退縮率。實驗中,先利用小型金屬管(35mm x 27mm)灌注測試用藥柱,透過成形藥柱軸向與徑向的密度標準差,探討不同重量的span-85,對鋁粉在石蠟與在HTPB中的分散效果。找出鋁粉和span-85在石蠟與HTPB中的最佳比例後,將兩者相混製作成50P(50%paraffin+50%HTPB)小藥柱,以同樣方法進行分散特性量測,最後得到當鋁粉與span-85在重量比5:1的混合比例下,該藥柱軸向與徑向密度有最小標準差。以此比例進行發動機藥柱(54mm x 180mm)灌製,並與未添加span-85之比較組藥柱做密度比較,發現無論在軸向與徑向的密度上均有良好的分散表現,且標準差明顯低於比較組。最後將藥柱裝置於發動機測試平台上,進行靜力(static test)試驗,以量取燃燒室艙壓與推力數據,並於實驗後估算藥柱消耗量與氧化劑消耗量,做比衝值(specific impulse)、當量比(equivalent ratio)、氧化劑通量以及退縮率(regression rate)之計算。從實驗的結果中可得到,氧化劑通量在250kg/m2-sec與400kg/m2-sec之間,含有金屬鋁粉的50P藥柱退縮率可表示為 ,而未含金屬鋁粉之50P藥柱之燃料退縮率,則表示為 。從實驗結果可發現,當GOx=370kg/m2-sec時,退縮率較50P藥柱增加約40%。顯示將鋁粉應用於過去的50P藥柱中,可達到提昇退縮率與當量比,在高氧化劑流量下降低噴嘴燒蝕。透過退縮率曲線的建立,與不同流量下推力、比衝值與當量比變化的趨勢,可作為未來火箭發展上,對於不同推力需求的參考。
In recent years, hybrid rocket attracts intensive research and application attentions in space propulsion in the new era. It is used not only for civil and atmospherical survey, but also for verifying scientific and technical payloads in sounding rocket programs. Hybrid rockets combine the advantages of solid and liquid rockets and avoid their shortcomings of un-throttlable and store problems of solid and liquid problems respectively so that it becomes a cost-effective, and safe alternative to the traditional rockets. Upon these advantages, hybrid rockets still suffer from the problems of low regression rate and lower specific impulse (Isp). There are some solutions to these problems, including adopting swirling injector, changing the fuel ingredient, modifying the port geometry and mixing with energetic additives.
In this research, the micro aluminum powder is added into the 50P (containing 50% HTPB and 50% paraffin) fuel grain, and surfactant is utilized to disperse the powder in the fuel grain. Also, the swirling injector for liquid oxidizer (N2O) is used to increase the regression rate. In the experiment, a small metal case of 35mm x 27mm is used to prime the fuel grain, and the fuel grain is cut into five equal parts in longitudinal and three equal parts in circumferential directions to examine the uniformity of the powder dispersion in the fuel grain. And then, by measuring the density, the dispersion uniformity can be estimated and the optimal Al/surfactant (span-85) ratio is found to be 5:1 in the cases of current study. The performance of the hybrid rocket propellant grains with optimal ratio of alumina powder is then compared with that without alumina powder. In order to acquire the chamber pressure and thrust for the performance, the fuel grains are integrated into the motor for hot fire tests. The Isp (specific impulse), equivalent ratio, oxidizer flux and the regression rate are measured and calculated. Between 250kg/m2-sec and 400kg/m2-sec of the oxidizer flux, the regression rate of metalized fuel and non-metallized fuel are and , respectively. According to the results, when the oxidizer flux is 370 kg/m2-s, the regression rate of metalized fuel grain increases about 40% comparing with the plain 50P fuel grain. Also, the equivalent ratio is increased and the erosion in the nozzle is reduced. The characteristic curve for the thrust with respect to oxidizer flux reduced from the experimental results will become a useful database and reference for the future development of metalized hybrid rocket.
1. Altman, D., and Holzman, A.,“Overview and History Rocket Propulsion,”Fundamental of Hybrid Rocket Combustion and Propulsion, Progress in Astronautics and Aeronautics, edited by M. Chiaverini and K.K., Kuo, Vol.218, AIAA, Reston, VA, 2006, Chap. 1, p. 3.
2. Altman, D., and Holzman, A.,“Overview and History Rocket Propulsion,”Fundamental of Hybrid Rocket Combustion and Propulsion, Progress in Astronautics and Aeronautics, edited by M. Chiaverini and K.K., Kuo, Vol.218, AIAA, Reston, VA, 2006, Chap. 1, p. 5.
3. Sutton, G.P., History of Liquid propellant Rocket Engines, ISBN 1-56347-649-5, 2005.
4. World Aerospace Systems, May 1968, p. 5.
5. Herrick, J.W., and Burgess,E. Rocket Encyclopedia, 1959, p.320.
6. Ewing,E.G.JournalofthePacificRocketSociety,1947.
7. U.S. Patent No. 3, 136, 119, 9 June 1964.
8. Salmon, M. “An ONERA Hybrid Rocket for Scientific Probes,” World Aerospace Systems, May 1968, p. 5.
9. Aviation Week and Space Technology,12 May 1997.
10. 張家軒,“混合式火箭燃燒系統之性能與設計分析,”國立成功大學航空太空工程研究所碩士論文(2001)
11. Karabeyoglu, A., Zilliac, G., Cantwell, B.J., DeZilwa, S., and Castellucci, P. “Scaled-Up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels,” Journal of Propulsion and Power, Vol. 20, No.6, November-December 2004, pp. 1037-11045.
12. 李聰盛,邱輝煌,賈澤民,“10 公斤級推力混合火箭系統研製及測
試”, CI-055,中華民國「民航學會/航太學會/燃燒學會」學術聯合會議, pp. 359-366, March, 2002.
13. 卓世明,“石蠟燃料混合火箭之性能測試,”國立成功大學航空太空工程研究所碩士論文(2007)
14. Aoki, A., Fukuchi, A.B., “Development of Low Cost Fuels for Hybrid Rocket Engine,” AIAA 2010-6638, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 25 - 28 July 2010, Nashville, TN.
15. Gomes, S.R., Leopoldo R. Jr., Rocco, J.A.F.F., Iha, K. “Design and testing of a Hybrid Rocket Motor, ” AIAA 2011-5757, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 31 July-03 August, San Diego, California.
16. Arena, Z., Athougies, A., Rodulfo, A., Dianne De Turris, “Swirl Injection Hybrid Rocket Design and Testing, ”AIAA 2011-5676, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 31 July-03 August, San Diego, California.
17. Shin,K.-H., Lee, C., Chang, S. Y. and Koo, J. Y., “The Enhancement of Regression Rate of Hybrid Rocket Fuel by Various Methods,” AIAA 2005-359, 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10-13 January 2005, Reno, Nevada.
18. Risha, G. A., Evans, B.J., Boyer, E., and Kuo, K.K.,“Metals, Energetic Additives, and Special Binders Used in Solid Fuels for Hybrid Rockets,” Fundamental of Hybrid Rocket Combustion and Propulsion, Progress in Astronautics and Aeronautics, edited by M. Chiaverini and K.K., Kuo, Vol.218, AIAA, Reston, VA, 2006, Chap. 10.
19. Risha, G.A., Boyer, E., Wehrman, R.B. and Kuo, K.K., “Performance Comparison of HTPB-Based Solid Fuels Containing Nano-Sized Energetic Power in a Cylidrical Hybrid Rocket Motor,” AIAA 2002-3576, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 7-10 July 2002, Indianapolis, Indiana.
20. Marothiya, G., Kumar, R., Ramakrichna, P.A.,“Enhancement of Regression Rate in Hybrid Rockets,”AIAA2011-5911, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 31 July - 03 August 2011, San Diego, California.
21. 楊碩, 汪南, 吴淑英, 相玲玲, 章勇珍, 朱冬生,“納米鋁粉/石蠟複合相變儲能材料的性能研究,”材料導報, 2009.
22. 林亦憲, 李金樹, 陸開泰, 葉早發,“含奈米鋁粉組合推進劑燃燒特性之研究,”中正嶺學報,vol. 41, No.1, May, 2012.
23. 陳世昌,“對工具鋼放電加工面之改善效果,”國立中央大學機械工程研究所碩士論文, 2003.
24. 吳坤齡,“界面活性劑與電泳輔助放電加工之研究,”國立中央大學機械工程研究所碩士論文, 2006.
25. 丁純乾,“添加界面活性劑對放電加工特性的影響,” 國立中央大學機械工程研究所碩士論文, 2004.
26. Griffin, W.C., “Classification of Surface-Active Agents by HLB,” Journal of the Society of Cosmetic Chemists 1: 311, 1949.
27. Davies, J. T., Rideal, E. K., “Interfacial Phenomena,“ 2nd edition, Academic Press: London, 1963.
28. Houser, T. J., and Peck, M. V., “Research in Hybrid Combustion,” Heterogeneous Combustion, edited by H. G. Wolfhard, I. Glassman, and L. Green Jr., Progress in Astronautics and Aeronautics, Vol. 15, AIAA, New York, NY, 1964, pp. 559–581.
29. Sutton, G. Biblarz, O., Rocket Propulsion Elements, 7th ed., Wiley Interscience Publication. New York, 2001.
30. Staggs, J.E.J., “The Heat of Gasification of polymer,” Fire Safety Journal 39, pp.711-720, 2004.
31. Marxman, G. A., and Gilbert, M., “Turbulent Boundary Layer Combustion in the Hybrid Rocket,” Ninth International Symposium on Combustion, Academic Press, New York, 1963, pp. 371–383.
32. Marxman, G. A., Wooldridge, C. E., and Muzzy, R. J.,“Fundamentals of Hybrid Boundary Layer Combustion,” Heterogeneous Combustion, Progress in Astronautics and Aeronautics, Vol. 15, Academic Press, New York, 1964, pp. 485–521.
校內:2018-08-28公開