簡易檢索 / 詳目顯示

研究生: 蔡承剛
Tsai, Cheng-Kang
論文名稱: 摻釔氧化釩熱阻式微感測器特性研究
Performance investigation of Y-doped VOx microbolometers
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 熱阻式感測器干涉結構摻釔氧化釩薄膜奈米金屬網抗反射響應度溫度電阻係數
外文關鍵詞: Bolometers, Interferometric, Y-doped VOx film, nanomesh, anti-reflection
相關次數: 點閱:64下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為具抗反射層與干涉結構之摻釔氧化釩熱阻式微感測器特性研究,對使用氧化釩作為感測材料之微型熱感測元件進行優化與改良,首先將釔元素微量摻雜於氧化釩感測薄膜中,藉此改變薄膜的電特性以及提升對溫度的靈敏度,並探討釔元素的摻雜量對電性產生之影響,尋求感測薄膜之最佳製程條件。另外將奈米金屬網狀結構之抗反射層製作於金屬吸收層上方,利用光線因折射率改變於結構中不斷折射與反射的特性達到抗反射之目的,提升元件對於紅外線的吸收率,藉此提升元件響應度。元件設計成空腔懸浮結構,包含鋁反射鏡、空腔、支撐懸臂、電極、感測層、鉻金屬吸收層與抗反射層,入射紅外光與經過反射鏡反射之紅外光形成建設性干涉,大幅提升紅外線的吸收率,且懸浮結構亦可有效減少感測層與基板接觸所產生之熱散逸,以增進元件特性。
    本研究使用磁控式射頻濺鍍系統製備摻釔氧化釩感測薄膜,於氬氣與氧氣之環境下轟擊釩靶與三氧化二釔靶進行共濺鍍,調變三氧化二釔靶的濺鍍時間,將摻雜釔元素之原子含量控制於3.08 %時,感測薄膜具有2.85 %/oC之溫度電阻係數,其室溫電阻率為9.92 Ω-cm,符合熱影像系統之讀出積體電路(Read-out integrated circuit, ROIC)製程之所需的電阻率須於1~10 Ω-cm之條件,此為本研究感測層薄膜之最佳製程條件,並將此結果應用於元件製程上。此外,本研究透過自組裝技術成功製作出單層排列結構之聚苯乙烯奈米球模板,作為蒸鍍遮罩,以此製備出奈米金屬網抗反射層,進而降低元件對紅外線的反射率。
    本研究製作出氧化釩熱感元件、摻釔氧化釩熱感元件以及具奈米金屬網抗反射層之摻釔氧化釩熱感元件,且此三種元件皆具有建設性干涉結構,三種元件的響應度分別為584.64 kV/W、886.43 kV/W與931.89 kV/W,元件對紅外光的吸收率分別為70.28%,70.38%,以及74.41%,證實將摻雜釔元素與新增抗反射層可有效提升元件的響應度以及降低紅外線反射率,提升元件的感測特性。

    In the study, the vanadium oxide (VOx) microbolometers were optimized and their performances were improved. The element yttrium (Y) was doped into VOx films and it made the higher temperature coefficient of resistance (TCR) and sensitivity to temperature. Additionally, the influence of the doping amount of the element Y on the electrical property was investigated. The nanomesh anti-reflection layer was produced on the top of microbolometer, and it could make the infrared light to refract and reflect in the nanostructures to enhance the absorptance. The microbolometer was designed as a cavity suspension structure with a reflector and a thin-metal absorption layer to create constructive interference. The devices were measured at a current of 1 μA, and the responsivity, thermal time constant, thermal conductivity, absorptance and detectivity were 931.89 kV/W, 4.48 ms, 6.19×10-8 W/K, 74.41% and 1.54×108 cmHz0.5W-1, respectively. The results showed that the doping Y in the VOx film and the nanomesh anti-reflection layer could effectively improve the sensitivity of the VOx microbolometers.

    摘要 I 誌謝 XIV 目錄 XV 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 動機與目的 2 參考文獻 4 第二章 實驗原理簡介 6 2.1 熱型感測器原理與特性 6 2.1.1 熱阻式紅外線感測器感測機制 6 2.1.2 熱阻式紅外線感測器特性簡介 7 2.2 感測層材料特性與製程方法介紹 11 2.2.1 氧化釩基本特性與製備方式 12 2.2.2 摻雜材料之選擇與目的 14 2.3 吸收層材料特性與運作機制 15 2.3.1 吸收層應用目的與材料選用 15 2.3.2 四分之一波長建設性干涉空腔結構 18 2.3.3 奈米金屬網抗反射結構 19 2.4 犧牲層技術介紹 20 2.4.1 犧牲層蝕刻方法 21 2.4.2 聚醯亞胺特性與蝕刻 22 2.5 量測系統 22 2.5.1 表面高度量測儀 22 2.5.2 四點探針 23 2.5.3 X光光電子能譜儀 24 2.5.4 低掠角薄膜繞射儀 24 2.5.5 掃描式電子顯微鏡 25 2.5.6 能量色散X光光譜儀 25 2.5.7 二次離子質譜儀 26 2.5.8 傅立葉轉換紅外線光譜儀 26 參考文獻 27 第三章 實驗流程規劃與製程步驟 44 3.1 元件光罩設計 45 3.2 元件製程流程 46 3.3 感測層薄膜製程 55 3.4 元件量測 56 3.4.1 溫度響應分析 56 3.4.2 響應度分析 57 3.4.3 頻率響應分析 57 3.4.4 熱導與電阻分析 58 3.4.5 低頻雜訊與檢測度分析 59 第四章 實驗數據與結果討論 65 4.1 摻雜前後氧化釩薄膜特性分析 65 4.1.1 薄膜成分與溫度電阻變化分析 65 4.1.2 薄膜鍵結分析 66 4.1.3 薄膜結晶性分析 68 4.2 抗反射層最佳化製程與特性分析 68 4.2.1 聚苯乙烯奈米球模板塗佈分析 68 4.2.2 電漿蝕刻奈米球減徑分析 70 4.2.3 網狀薄膜金屬厚度分析 70 4.2.4 抗反射層特性分析 71 4.3 元件量測 71 4.3.1 溫度響應分析 72 4.3.2 響應度分析 72 4.3.3 頻率響應分析 73 4.3.4 熱導與電阻分析 74 4.3.5 吸收率分析 75 4.3.6 低頻雜訊與檢測度分析 75 參考文獻 77 第五章 結論與未來展望 99 5.1 結論 99 5.2 未來展望 100

    第一章
    [1] A. Rogalski, “History of infrared detectors,” Opto-Electron. Rev., vol. 20, pp. 279-308, 2012.
    [2] E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas., vol. 33, pp. 33-46, 2012.
    [3] N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg., vol. 196, pp. 523-526, 2008.
    [4] C. M. Natarajan, M. G. Tanner and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol., vol. 25, pp. 063001-1-063001-16, 2012.
    [5] P. G. Datskos, N. V. Lavrik and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum., vol. 75, pp. 1134-1148, 2004.
    [6] J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and fresnel lens arrays,” Opt. Exp., vol. 14, pp. 609-624, 2006.
    [7] M. Shankar, J. B. Burchett, Q. Hao, B. D. Guenther and D. J. Brady, “Human-tracking systems using pyroelectric infrared detectors,” Opt. Eng., vol. 45, pp. 106401-1-106401-10, 2006.
    [8] J. Yun and M.H. Song, “Detecting Direction of Movement Using Pyroelectric Infrared Sensors,” IEEE Sens. J, vol. 11, pp.1482-1489, 2014
    [9] H. Wu, S. Grabarnik, A. Emadi, G. de Graaf and R. F. Wolffenbuttel, “A thermopile detector array with scaled TE elements for use in an integrated IR microspectrometer,” J. Micromech. Microeng., vol. 18, pp. 064017-1-064017-7, 2008.
    [10] D. H. Xu, B. Xiang, Y. L. Wang, M. F. Liu and T. Li, “Integrated micromachined thermopile IR detectors with an XeF2 dry-etching process,” J. Micromech. Microeng., vol. 19, pp. 125003-1-125003-11, 2009.
    [11] C. B. Aiken, W. H. Carter and F. S. Philips, “The production of film type bolometers with rapid response,” Rev. Sci. Instrum., vol. 17, pp. 377-385, -125003-111946.
    [12] V. Y. Zerov, V. G. Malyarov and I. A. Khrebtov, ”Calculational modelling of the main characteristics of an uncooled linear microbolometer array,” J. Opt. Technol. vol.7, pp.153-157, 2004.
    [13] M. Galeazzi and D. McCammon, “Microcalorimeter and bolometer model,” J. Appl. Phys., vol. 93, pp. 4856-4869, 2003.
    [14] B. Wang, J. Lai, H. Li, H. Hu and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol., vol. 57, pp. 8-13, 2013.
    [15] O. Y. Mang, “Measurement of effective absorptance on microbolometers,” IEEE Trans. Instrum. Meas., vol. 55, pp. 1012-1016, 2006.
    [16] D. Gu, Z. H. Sun, X. Zhou, T. Wang and Y. D. Jiang, “Effect of yttrium-doping on the microstructures andsemiconductor-metal phase transition characteristicsof polycrystalline VO2 thin films,” Appl. Surf. Sci., vol. 359, pp. 819-825, 2015.

    第二章
    [1] C. Vieider, S. Wissmar, P. Ericsson, U. Halldin and F. Niklaus, et al., “Low-cost far infrared bolometer camera for automotive use,” Proc. SPIE, vol. 6542, pp. 65421L-1-65421L-10, 2007.
    [2] F. Niklaus, C. Jansson, A. Decharat, J. E. Källhammer, H. Pettersson and G. Stemme, “Uncooled Infrared Bolometer Arrays Operating in a Low to Medium Vacuum Atmosphere: Performance Model and Tradeoffs,” Proc. SPIE, vol. 6542, pp. 65421M-1-65421-12, 2007.
    [3] G. Li, N. Yuan, J. Li and X. Chen, “Thermal simulation of micromachined bridge and self-heating for uncooled VO2 infrared microbolometer,” Sens. Actuator. A Phys., vol. 126, pp. 430-435, 2006.
    [4] P. Eriksson, J. Y. Andersson and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst., vol. 6, pp. 55-61, 1997.
    [5] M. Abdel-Rahman, S. Ilahi, M. F. Zia, M. Alduraibi, N. Debbar, N. Yacoubi and B. Ilahi, “Temperature coefficient of resistance and thermal conductivity of Vanadium oxide 'Big Mac' sandwich structure,” Infrared Phys. Technol., vol. 71, pp. 127-130, 2015.
    [6] N. Fieldhouse, S. M. Pursel, M. W. Horn and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering,” J. Phys. D-Appl. Phys., vol. 42, pp. 055408-1-055408-6, 2009.
    [7] R. K. Bhan, R. S. Saxena, C. R. Jalwania and S.K. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Def. Sci. J., vol. 59, pp. 580-589, 2009.
    [8] H. Alaboz, Y. Demirhan, H. Yuce, G. Aygun and L. Ozyuzer1, “Comparative study of annealing and gold dopant effect on DC sputtered vanadium oxide films for bolometer applications,” Opt. Quantum Electron., vol. 238, pp. 1-10, 2017.
    [9] D. C. Sinclair and A. R. West, “Impedance and modulus spectroscopy of
    semiconducting BaTiO3 showing positive temperature coefficient of resistance,” J. Appl. Phys., vol. 66, pp. 3850-3856, 1989.
    [10] J. E. Ralph, “A positive temperature coefficient thermistor bolometer,” Inf. Phys., vol. 22, pp. 245-249, 1982.
    [11] M. A. L. Nobre and S. Lanfredi, “Grain boundary electric characterization of Zn7Sb2O12 semiconducting ceramic: A negative temperature coefficient thermistor,” J. Appl. Phys., vol. 93, pp. 5576-5582, 2003.
    [12] R. C. Chittick, J. H. Alexander and H. F. Sterling, “The Preparation and Properties of Amorphous Silicon,” J. Electrochem. Soc., vol. 116, pp. 71-81, 1969.
    [13] S. M. Park, S. Han and H. C. Lee, “Analytical model for the electro-thermal feedback effect in a microbolometer infrared focal plane array,” Opt. Eng., vol. 53, pp. 043104-1-043104-5, 2014.
    [14] H. Nefzi and F. Sediri, “Vanadium oxide nanotubes VOx-NTs: Hydrothermal synthesis, characterization, electrical study and dielectric properties,” J. Solid State Chem., vol. 201, pp. 237-243, 2013.
    [15] J. S. Shie and P. K. Weng, “Design considerations of metal-film bolometer with micromachined floating membrane,” Sens. Actuator A-Phys., vol. 33, pp. 183-189, 1992.
    [16] M. H. Unewisse, K. C. Liddiard, B. I. Craig, S. J. Passmore, R. J. Watson, R. E. Clarke and O. Reinhold, “Semiconductor film bolometer technology for uncooled IR sensors,” Proc. SPIE, vol.2552, pp. 77-87, 1995.
    [17] A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett., vol. 69, pp. 1801-1803, 1996.
    [18] R. T. R Kumar, B. Karunagaran, D. Mangalaraj, S. K. Narayandass, M. Manoravi, M. Joseph, V. Gopal, R. K. Madaria and J. P. Singh, “Room temperature deposited vanadium oxide thin films for uncooled infrared detectors,” Mater. Res. Bull., vol. 38, pp. 1235-1240, 2003.
    [19] N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, et al, “Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys., vol. 9, pp. 661-666, 2013.
    [20] A. Sharoni, J. G. Ramirez and I. K. Schuller, “Multiple avalanches across the metal-insulator transition of vanadium oxide nanoscaled junctions,” Phys. Rev. Lett., vol. 101, pp. 026404-1-026404-4, 2008.
    [21] A. A. Akande, K. E. Rammutla, T. Moyo, S. E. Osman, S. S. Nkosi, C. J. Jafta and B. W. Mwakikuga, “Magnetism variations and susceptibility hysteresis at the metal-insulator phase transition temperature of VO2 in a composite film containing vanadium and tungsten oxides,” J. Magn. Magn. Mater., vol. 375, pp. 1-9, 2015.
    [22] N. Bahlawane and D. Lenoble, “Vanadium Oxide Compounds: Structure, Properties, and Growth from the Gas Phase,” Chem. Vapor Depos., vol. 20, pp. 299-311, 2014.
    [23] A. M. Makarevich, I. I. Sadykov, D. I. Sharovarov, V. A. Amelichev,
    A. A. Adamenkov, D. M. Tsymbarenko, A. V. Plokhih, M. N. Esaulkov,
    P. M. Solyankin and A. R. Kaul, “Chemical synthesis of high quality epitaxial vanadium dioxide films with sharp electrical and optical switch properties,” J. Mater. Chem. C, vol. 3, pp. 9197-9205, 2015.
    [24] G. S. Nadkarni and V. S. Shirodkar, “Experiment and theory for switching in Al/V2O5/Al devices,” Thin Solid Films, vol. 105, pp.115-129, 1983.
    [25] M. Kang, I. Kim, S. W. Kim, J. W. Ryu and H. Y. Park, “Metal-insulator transition without structural phase transition in V2O5 film,” Appl. Phys. Lett., vol. 98, pp. 131907-1-131907-3, 2011.
    [26] G. Golan, A. Axelevitch, B. Sigalov and B. Gorenstein, “Metal-insulator phase transition in vanadium oxides films,” Microelectron. J., vol. 34, pp. 255-258, 2003.
    [27] K. C. Kam and A. K. Cheetham, “Thermochromic VO2 nanorods and other vanadium oxides nanostructures,” Mater. Res. Bull., vol. 41, pp. 1015-1021, 2006.
    [28] Y. F. Zhang, M. J. Fan, X. H. Liu, C. Huang and H. B. Li, “Beltlike V2O3@C Core-Shell-Structured Composite: Design, Preparation, Characterization, Phase Transition, and Improvement of Electrochemical Properties of V2O3,” Eur. J. Inorg. Chem., vol. 10, pp. 1650-1659, 2012.
    [29] S. Yonezawa, Y. Muraoka, Y. Ueda and Z. Hiroi, “Epitaxial strain effects on the metal-insulator transition in V2O3 thin films,” Solid State Commun., vol. 129, pp. 245-248, 2004.
    [30] Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys., vol. 114, pp. 113509-1-113509-5, 2013.
    [31] A.D. Rata, S. Vongtragool, D.O. Boerma and T. Hibma, “Stoichiometry determination of VOx thin films by 18O-RBS spectrometry,” Thin Solid Films, vol.400, pp. 120-124, 2001.
    [32] Z.S. El Mandouh and M.S. Selim, “Physical properties of vanadium pentoxide sol gel films,” Thin Solid Films, vol. 371, pp. 259-263, 2000.
    [33] R. T. R. Kumar, B. Karunagaran, D. Mangalaraj, S. K. Narayandass, P. Manoravi, M. Joseph and V. Gopal, “Study of a pulsed laser deposited vanadium oxide based microbolometer array,” Smart Mater. Struct., vol. 12, pp. 188-192, 2003.
    [34] S. Saitzek, F. Guinneton, G. Guirleo, L. Sauques, K. Aguir and J. R. Gavarri, Thin Solid Films, vol. 516, pp. 891-897, 2008.
    [35] Y. H. Han, K. T. Kim, H. J. Shin, S. Moon and I. H. Choi, “Enhanced characteristics of an uncooled microbolometer using vanadium–tungsten oxide as a thermometric material,” Appl. Phys. Lett., 86, pp. 254101-1-254101-3, 2005.
    [36] H. Y. Lee, C. L. Wu, C. H. Kao, C. T. Lee, S. F. Tang and W. J. Lin, “Investigated performance of uncooled tantalum-doped VOx floating-type microbolometers,” Appl. Surf. Sci., vol. 354, pp. 106-109, 2015.
    [37] S. Q. Xu, H. P. Ma, S. X. Dai and Z. H. Jiang, “Study on optical and electrical switching properties and phase transition mechanism of Mo6+-doped vanadium dioxide thin films,” J. Mater. Sci., vol. 39, pp. 489-493, 2004.
    [38] A.Y. Glamazda, V. A. Karachevtsev, W. B. Euler and I. A. Levitsky, “Achieving High Mid-IR Bolometric Responsivity for Anisotropic Composite Materials from Carbon Nanotubes and Polymers,” Adv. Funct. Mater., vol. 22, pp. 2177-2186, 2012.
    [39] F. Niklaus, A. Decharat, C. Jansson and G. Stemme, “Performance model for uncooled infrared bolometer arrays and performance predictions of bolometers operating at atmospheric pressure,” Infrared Phys. Technol., vol. 51, pp. 168-177, 2008.
    [40] A. Bain, J. L. Martin, E. Mottin, J. L. O. Buffet, J. L. Tissot, R. Tronel, M. Vilain and J. J. Yon, “Amorphous silicon-based uncooled microbolometer technology for low-cost IRFPA,” Sens. Mater., vol. 12, pp. 365-373, 2000.
    [41] A. H. Z. Ahmed and R. N. Tait, “Fabrication of a self-absorbing, self-supported complementary metal-oxidesemiconductor compatible micromachined bolometer,” J. Vac. Sci. Technol. A, vol. 22, pp. 842-846, 2004.
    [42] M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev and V. V. Gerasimov, ” Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral rang,” Optoelectron. Instrument. Proc., vol. 47, pp. 109-113, 2011.
    [43] C. Hilsum, “Infrared absorption of thin metal films,” J. Opt. Soc. Amer., vol. 44, pp. 188-191, 1954.
    [44] B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys., vol. 39, pp. 165-170, 1986.
    [45] W. Theiß, “Optical properties of porous silicon,” Surf. Sci. Rep., vol. 29, pp. 91-192, 1997.
    [46] G. Gerlach, “Bio and nano packaging techniques for electron devices,” Springer, Berlin, Germany, 2012.
    [47] A. D. Parsons and D. J. Pedder, “Thin‐film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A, vol. 6, pp. 1686-1689, 1988.
    [48] M. A. Kats, R. Blanchard, P. Genevet and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater., vol. 12, pp. 20-24, 2013.
    [49] V. T. Bly and J. T. Cox, “Infrared absorber for ferroelectric detectors,” Appl. Opt., vol. 33, pp. 26-30, 1994.
    [50] M. Born, E. Wolf and A. B. Bhatia, “Principles of optics,” 7th, Cambridge university, 1999.
    [51] K. C. Liddiard, “Application of interferometric enhancement to self-absorbing thin film thermal IR detectors,” Infrared Phys., vol. 34, pp. 379-387, 1993.
    [52] C. G. Bernhard and W. H. Miller, “A Corneal Nipple Pattern in Insect Compound Eyes,” Acta Physiol., vol. 56, pp. 385-386, 1962.
    [53] P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” Principle,” Nature, vol. 244, pp. 281-282, 1973.
    [54] S.J. Wilson and M.C. Hutley, “The Optical Properties of 'Moth Eye' Antireflection Surfaces,” J. Mod. Opt., vol. 29, pp. 993-1009, 1982.
    [55] C. Lee, S.Y. Bae, S. Mobasser and H. Manohara, “A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor,” Nano Lett., vol. 5, pp. 2438-2442, 2005.
    [56] C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B, vol. 105, pp. 5599-5611, 2001.
    [57] N. Shen, J. Yu and Z. Tang, “An uncooled infrared microbolometer array for low-cost applications,” IEEE Photonic. Technol. Lett., vol. 27, pp. 1247-1249, 2015.
    [58] K. Demirel, E. Yazgan, S. Demir and T. Akin, “A folded leg Ka-band RF MEMS shunt switch with amorphous silicon (a-Si) sacrificial layer,” Microsyst. Technol., vol. 23, pp. 1191-1200, 2017.
    [59] B. Liu, Z. Lv and Z. Li, “A surface micromachining process utilizing dual metal sacrificial Layer for fabrication of RF MEMS switch,” IEEE Nano/Micro Eng. Mol. Syst., pp. 620-623, 2010.
    [60] A. Hierlemann and H. Baltes, “CMOS-based chemical microsensors,” Analyst, vol. 128, pp. 15-28, 2003.
    [61] H. W. Lin and C. S. Tan, “Preparation of polyamic acid and polyimide nanoparticles bycompressed fluid antisolvent and thermal imidization,” J. Supercrit. Fluids., vol. 99, pp. 103-111, 2015.
    [62] Y. J. Chen, H. Y. Mao, Q. L. Tan, C. Y. Xue, W. Ou, J. Liu and D. P. Chen, “Fabrication of polyimide sacrificial layers with inclined sidewalls based on reactive ion etching,” AIP Adv., vol. 4, pp. 031328-1-031328-7, 2014.
    [63] A. Bagolini, L. Pakula, T. L. M. Scholtes, H. T. M. Pham, P. J. French and P. M. Sarro, “Polyimide sacrificial layer and novel materials for post-processing surface micromachining,” J. Micromech. Microeng., Vol.12, pp. 385-389, 2002.

    第四章
    [1] D. Gu, X. Zhou, R. Guo, Z. H. Wang and Y. D. Jiang, “The microstructures and electrical properties of Y-doped amorphous vanadium oxide thin films,” Infrared Phys. Technol., vol. 81, pp. 64-68, 2017.
    [2] C. Venkatasubramanian, M. W. Horn, S. Ashok, “Ion implantation studies on VOx films prepared by pulsed dc reactive sputtering,” Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, vol. 267, pp. 1476-1479, 2009.
    [3] S. H. Chen, J. J. Lai, J. Dai, H. Ma, H. C. Wang and X. J. Yi, “Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method,” Opt. Express., vol. 17, pp. 24153-24161, 2009.
    [4] R. K. Jain and A. Khanna, “Structural, optical and electrical properties of crystalline V2O5 films deposited by thermal evaporation and effects of temperature on UV-vis and Raman spectra,” Optik, vol. 144, pp. 271-280, 2017.
    [5] D. S. Toledano, P. Metcalf and V. E. Henrich, “Surface conditions for the observation of metal-insulator transitions on Cr-doped V2O3,” Surf. Sci., vol. 449, pp. 19-30, 2000.
    [6] T. M. Sabov, O.S. Oberemok, O. V. Dubikovskyi, V. P. Melnik, V. P. Kladko, B. M. Romanyuk, V. G. Popov, O. Y. Gudymenko and N. V. Safriuk, “Oxygen ion-beam modification of vanadium oxide films for reaching a high value of the resistance temperature coefficient,” Semicond. Phys. Quantum Electron. and Optoelectron., vol. 20, pp. 153-158, 2017.
    [7] G. Silversmit, D. Depla, H. Poelman, G. B. Marin and R. De Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+),” J. Electron Spectrosc. Relat. , vol. 135, pp. 167-175, 2004.
    [8] P. Rouffignac, J. S. Park, and R. G. Gordon, “Atomic Layer Deposition of Y2O3 Thin Films from Yttrium Tris(N,N’-diisopropylacetamidinate) and Water,” Chem. Mater., vol. 17, pp. 4808-4814, 2005.
    [9] G. Turban and M. Rapeaux, “Dry etching of polyimide in O2-CF4 and O2-SF6 plasmas,” J. Electrochem. Soc., vol. 130, pp. 2231-2236, 1983.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE