簡易檢索 / 詳目顯示

研究生: 郭咨吟
Kuo, Tzu-Yin
論文名稱: 高分子修飾陰極於發光二極體之研究
Study on polymer light-emitting diodes via cathode interfacial modification using polymer nanolayer
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 71
中文關鍵詞: 上發光元件陰極修飾層高分子發光二極體
外文關鍵詞: top-emitting device, cathode modification, PLED
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本研究中,將針對高分子型陰極修飾層的特性做探討與應用,內容分為兩部份:第一部份以聚脲酯作為陰極修飾層,藉由改變不同的陰極金屬、聚脲酯塗佈轉速及鋁陰極厚度,探討其對於元件效能的影響。結果顯示聚脲酯能阻擋電洞於聚脲酯與發光層的介面並和鋁電極形成聚脲酯-鋁複合物,以降低電子注入能障,此元件發光效率能大幅提升至1.27 cd/A,另外也發現此種元件特性深受鋁陰極及聚脲酯厚度的影響。第二部份利用聚氧化乙烯可增進鈣及鋁電極的電子注入能力,修飾上發光元件的鈣/銀與鋁/銀陰極,以期得到良好的元件效能,並比較不同半穿透陰極的上發光元件發光特性。以聚氧化乙烯/鈣(10nm)/銀(20nm)為半穿透陰極的這組上發光元件其發光效率、圖譜半波寬、CIE色度座標分別為3.64 cd/A、38.7 nm及(0.666, 0.333),由於適當的腔體結構控制,此元件同時達到了高效率且發明亮紅光的特性。

      In this study, the effects of polymer nanolayer on cathode interfacial modification are investigated. The contents are divided into two sections. In the first section, polyurethane (PU) is used to modify the cathode interface. The underlying physics of PU layer in the device performance improvement is studied by performing a serious experiments with various conditions. From the results, the performance enhancement is attributed to both the hole-blocking capacity of PU layer and the specific interaction between PU and deposited Al. The EL efficiency of the PU-based device using Al cathode can reach 1.27 cd/A. In addition, the device performance is found to strongly depend on the thickness of the Al layer and PU layer. In the second section, we explores the correlations between the EL characteristics of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV)-based top-emitting devices and the properties of different semi-transparent cathodes (Ca/Ag and Al/Ag). In order to improve the electron injection, an ultra-thin poly(ethylene oxide) (PEO) layer is introduced to modify the interface between MEH-PPV and the semi-transparent cathodes. In addition, the EL efficiency, full width at half maximum, and Commission International de I’Eclairage coordinate of the top-emitting device using semi-transparent PEO/Ca(10 nm)/Ag(20 nm) cathode are 3.64 cd/A, 38.7 nm, and (0.666,0.333), respectively. The superior performance is attributed to the formation of an appropriate microcavity structure.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 有機電激發光元件的發展 2 1-2-1 有機電激發光元件的起源 2 1-2-2 OLED與PLED的比較 3 1-2-3 有機電激發光元件的發展現況 4 1-3 電激發光原理 5 1-4 有機電激發光元件結構 7 1-4-1 有機發光二極體元件結構的演進 7 1-4-2 有機發光二極體元件結構的配置 8 1-5 陰極修飾層於發光元件之作用 11 1-6 研究動機與大綱 13 1-6-1 研究動機 13 1-6-2 研究大綱 14 第二章 聚脲酯於陰極修飾層之研究 19 2-1 前言 19 2-2 實驗 20 2-2-1 藥品來源與聚脲酯合成 20 2-2-2 聚脲酯結構鑑定 20 2-2-3 元件組裝 21 2-2-4 光電特性量測 23 2-3 結果與討論 24 2-3-1 聚脲酯結構分析 24 2-3-2 聚脲酯修飾不同金屬陰極對元件特性之探討 25 2-3-3 聚脲酯厚度對元件特性之影響 26 2-3-4 鋁陰極厚度對元件特性之影響 27 2-4 結論 29 第三章 利用聚氧化乙烯修飾上發光元件之半穿透陰極的製作與特性 42 3-1 前言 42 3-2 實驗 43 3-2-1 藥品來源與前處理 43 3-2-2 元件組裝 44 3-2-3 光電特性量測 46 3-3 結果與討論 47 3-3-1 聚氧化乙烯於元件特性之探討 47 3-3-2 下發光與上發光元件特性之比較 48 3-3-3 不同半穿透陰極對元件特性之影響 49 3-4 結論 52 第四章 總結與建議 64 4-1 總結 64 4-2 未來工作建議 65 參考文獻 66 自述 71

    1. M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys. , 38, 2024, 1963.
    2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. , 51, 913, 1987.
    3. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539, 1990.
    4. Karl Ziemelis, Nature, 399, 3, 1999.
    5. http://www.oled-info.com/
    6. http://163.23.210.150/oled/index.htm
    7. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature, 397, 121, 1999.
    8. Y. Yang and A. J. Heeger, Appl. Phys. Lett. , 64, 1245, 1994.
    9. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, Appl. Phys. Lett. , 75, 1679, 1999.
    10. T. Fukuda, T. Kanbara, T. Yamamoto, K. Ishikawa, H. Takazoe, and A. Fukuda, Appl. Phys. Lett. , 68, 2346, 1996.
    11. I. D. Parker, Q. Pei, and M. Marrocco, Appl. Phys. Lett. , 65, 1272, 1994.
    12. B. W. D’Andrade, M. E. Thompson, and S. R. Forrest, Adv. Mater. , 14, 147, 2002.
    13. Z. Xie , L. S. Hung, and F. Zhu, Chem. Phys. Leet. , 381, 691, 2003.
    14. C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, Appl. Phys. Lett. , 83, 5127, 2003.
    15. H. W. Choi, S. Y. Kim, K. -B. Kim, Y. -H. Tak, and J. -L. Lee, Appl. Phys. Lett. , 86, 012104, 2005.
    16. G. Gu, V. Bulovic, P. E. Burrows, S. R. Forest, and M. E. Thompson, Appl. Phys. Lett. , 68, 2606, 1996.
    17. G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov, and S. R. Forrest, Appl. Phys. Lett. , 72, 2138, 1998.
    18. L. S. Hung and C. W. Tang, Appl. Phys. Lett. , 74, 3209, 1999.
    19. L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Appl. Phys. Lett. , 78, 544, 2001.
    20. R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, Appl. Phys. Lett. , 84, 4614, 2004.
    21. V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. , 70, 2954, 1997.
    22. T. Dobbertin, O. Werner, J. Meyer, A. Kammoun, D. Schneider, T. Riedl, E. Becker, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. , 83, 5071, 2003.
    23. S. Kho, S. Sohn, and D. Jung, Jpn. J. Appl. Phys. Part 2 , 42, L552, 2003.
    24. C. W. Chen, C. L. Lin, and C. C. Wu, Appl. Phys. Lett. , 85, 2469, 2004.
    25. D. Braun and A. J. Heeger, Appl. Phys. Lett. , 58, 1982, 1991.
    26. Y. Cao, G. Yu, I. D. Parker, and A. J. Heeger, J. Appl. Phys. , 88, 3618, 2000.
    27. A. Nakamura, T. Tada, M. Mizukami, and S. Yagyu, Appl. Phys. Lett. , 84, 130, 2004.
    28. Y. -F. Liew, H. Aziz, N. -X. Hu, H. S. -O. Chan, G. Xu, and Z. Popovic, Appl. Phys. Lett. , 77, 2650, 2000.
    29. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. , 70, 152, 1997.
    30. H. -M. Lee, K. -H. Choi, D. -H. Hwang, L. -M. Do, T. Zyung, J. -W. Lee, and J. -K. Park, Appl. Phys. Lett. , 72, 2382, 1998.
    31. T. -W. Lee and O. O. Park, Adv. Mater. , 13, 1274, 2001.
    32. Y. Cao, G. Yu, and A. J. Heeger, Adv. Mater. , 10, 917, 1998.
    33. Q. Xu, J. Ouyang, Y. Yang, T. Ito, and J. Kido, Appl. Phys. Lett. , 83, 4695, 2003.
    34. X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow, and Y. Cao, Appl. Phys. Lett. , 84, 3522, 2004.
    35. Y. -H. Niu, H. Ma, Q. Xu, and Alex K. -Y. Jen, Appl. Phys. Lett. , 86, 083504, 2005.
    36. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S, N. Hsieh, and Y. S. Fu, Appl. Phys. Lett. , 87, 013504, 2005.
    37. H. L. Wang, A. Gopalan, and T. C. Wen, Mater. Chem. Phys. , 82, 793, 2003.
    38. J. M. Burkstrand, J. Appl. Phys. , 52, 4795, 1981.
    39. X. Y. Deng, M. K. Ho, and K. Y. Wong, Appl. Phys. Lett. , 99, 016103, 2006.
    40. R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, Appl. Phys. Lett. , 69, 1997, 1996.
    41. H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, J. Appl. Phys. , 81, 2825, 1997.
    42. Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, Chem. Phys. Lett. , 386, 128, 2004.
    43. S. F. Hsu, C. C. Lee, S. W. Hwang, H. H. Chen, C. H. Chen, and A. T. Hu, Thin Solid Films, 478, 271, 2005.
    44. S. F. Hsu, C. C. Lee, S. W. Hwang, and C. H. Chen, Appl. Phys. Lett. , 86, 253508, 2005.
    45. D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, and H. Benisty, IEEE J. Sel. Top. Quantum Electron, 8, 189, 2002.
    46. E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cao, and G. J. Zydzik, Science, 265, 943, 1994.
    47. R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, Appl. Phys. Lett. , 77, 1262, 2000.
    48. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, J. Appl. Lett. , 83, 2377, 1998.
    49. C. M. Ramsdale and N. C. Greenham, J. Phys. D, 36, L29-L34, 2003.
    50. 陳金鑫、黃孝文,OLED有機電激發光材料與元件,五南圖書2005年出版。

    下載圖示 校內:立即公開
    校外:2006-06-21公開
    QR CODE