| 研究生: |
郭咨吟 Kuo, Tzu-Yin |
|---|---|
| 論文名稱: |
高分子修飾陰極於發光二極體之研究 Study on polymer light-emitting diodes via cathode interfacial modification using polymer nanolayer |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 上發光元件 、陰極修飾層 、高分子發光二極體 |
| 外文關鍵詞: | top-emitting device, cathode modification, PLED |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,將針對高分子型陰極修飾層的特性做探討與應用,內容分為兩部份:第一部份以聚脲酯作為陰極修飾層,藉由改變不同的陰極金屬、聚脲酯塗佈轉速及鋁陰極厚度,探討其對於元件效能的影響。結果顯示聚脲酯能阻擋電洞於聚脲酯與發光層的介面並和鋁電極形成聚脲酯-鋁複合物,以降低電子注入能障,此元件發光效率能大幅提升至1.27 cd/A,另外也發現此種元件特性深受鋁陰極及聚脲酯厚度的影響。第二部份利用聚氧化乙烯可增進鈣及鋁電極的電子注入能力,修飾上發光元件的鈣/銀與鋁/銀陰極,以期得到良好的元件效能,並比較不同半穿透陰極的上發光元件發光特性。以聚氧化乙烯/鈣(10nm)/銀(20nm)為半穿透陰極的這組上發光元件其發光效率、圖譜半波寬、CIE色度座標分別為3.64 cd/A、38.7 nm及(0.666, 0.333),由於適當的腔體結構控制,此元件同時達到了高效率且發明亮紅光的特性。
In this study, the effects of polymer nanolayer on cathode interfacial modification are investigated. The contents are divided into two sections. In the first section, polyurethane (PU) is used to modify the cathode interface. The underlying physics of PU layer in the device performance improvement is studied by performing a serious experiments with various conditions. From the results, the performance enhancement is attributed to both the hole-blocking capacity of PU layer and the specific interaction between PU and deposited Al. The EL efficiency of the PU-based device using Al cathode can reach 1.27 cd/A. In addition, the device performance is found to strongly depend on the thickness of the Al layer and PU layer. In the second section, we explores the correlations between the EL characteristics of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV)-based top-emitting devices and the properties of different semi-transparent cathodes (Ca/Ag and Al/Ag). In order to improve the electron injection, an ultra-thin poly(ethylene oxide) (PEO) layer is introduced to modify the interface between MEH-PPV and the semi-transparent cathodes. In addition, the EL efficiency, full width at half maximum, and Commission International de I’Eclairage coordinate of the top-emitting device using semi-transparent PEO/Ca(10 nm)/Ag(20 nm) cathode are 3.64 cd/A, 38.7 nm, and (0.666,0.333), respectively. The superior performance is attributed to the formation of an appropriate microcavity structure.
1. M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys. , 38, 2024, 1963.
2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. , 51, 913, 1987.
3. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539, 1990.
4. Karl Ziemelis, Nature, 399, 3, 1999.
5. http://www.oled-info.com/
6. http://163.23.210.150/oled/index.htm
7. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature, 397, 121, 1999.
8. Y. Yang and A. J. Heeger, Appl. Phys. Lett. , 64, 1245, 1994.
9. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, Appl. Phys. Lett. , 75, 1679, 1999.
10. T. Fukuda, T. Kanbara, T. Yamamoto, K. Ishikawa, H. Takazoe, and A. Fukuda, Appl. Phys. Lett. , 68, 2346, 1996.
11. I. D. Parker, Q. Pei, and M. Marrocco, Appl. Phys. Lett. , 65, 1272, 1994.
12. B. W. D’Andrade, M. E. Thompson, and S. R. Forrest, Adv. Mater. , 14, 147, 2002.
13. Z. Xie , L. S. Hung, and F. Zhu, Chem. Phys. Leet. , 381, 691, 2003.
14. C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, Appl. Phys. Lett. , 83, 5127, 2003.
15. H. W. Choi, S. Y. Kim, K. -B. Kim, Y. -H. Tak, and J. -L. Lee, Appl. Phys. Lett. , 86, 012104, 2005.
16. G. Gu, V. Bulovic, P. E. Burrows, S. R. Forest, and M. E. Thompson, Appl. Phys. Lett. , 68, 2606, 1996.
17. G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov, and S. R. Forrest, Appl. Phys. Lett. , 72, 2138, 1998.
18. L. S. Hung and C. W. Tang, Appl. Phys. Lett. , 74, 3209, 1999.
19. L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Appl. Phys. Lett. , 78, 544, 2001.
20. R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, Appl. Phys. Lett. , 84, 4614, 2004.
21. V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. , 70, 2954, 1997.
22. T. Dobbertin, O. Werner, J. Meyer, A. Kammoun, D. Schneider, T. Riedl, E. Becker, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. , 83, 5071, 2003.
23. S. Kho, S. Sohn, and D. Jung, Jpn. J. Appl. Phys. Part 2 , 42, L552, 2003.
24. C. W. Chen, C. L. Lin, and C. C. Wu, Appl. Phys. Lett. , 85, 2469, 2004.
25. D. Braun and A. J. Heeger, Appl. Phys. Lett. , 58, 1982, 1991.
26. Y. Cao, G. Yu, I. D. Parker, and A. J. Heeger, J. Appl. Phys. , 88, 3618, 2000.
27. A. Nakamura, T. Tada, M. Mizukami, and S. Yagyu, Appl. Phys. Lett. , 84, 130, 2004.
28. Y. -F. Liew, H. Aziz, N. -X. Hu, H. S. -O. Chan, G. Xu, and Z. Popovic, Appl. Phys. Lett. , 77, 2650, 2000.
29. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. , 70, 152, 1997.
30. H. -M. Lee, K. -H. Choi, D. -H. Hwang, L. -M. Do, T. Zyung, J. -W. Lee, and J. -K. Park, Appl. Phys. Lett. , 72, 2382, 1998.
31. T. -W. Lee and O. O. Park, Adv. Mater. , 13, 1274, 2001.
32. Y. Cao, G. Yu, and A. J. Heeger, Adv. Mater. , 10, 917, 1998.
33. Q. Xu, J. Ouyang, Y. Yang, T. Ito, and J. Kido, Appl. Phys. Lett. , 83, 4695, 2003.
34. X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow, and Y. Cao, Appl. Phys. Lett. , 84, 3522, 2004.
35. Y. -H. Niu, H. Ma, Q. Xu, and Alex K. -Y. Jen, Appl. Phys. Lett. , 86, 083504, 2005.
36. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S, N. Hsieh, and Y. S. Fu, Appl. Phys. Lett. , 87, 013504, 2005.
37. H. L. Wang, A. Gopalan, and T. C. Wen, Mater. Chem. Phys. , 82, 793, 2003.
38. J. M. Burkstrand, J. Appl. Phys. , 52, 4795, 1981.
39. X. Y. Deng, M. K. Ho, and K. Y. Wong, Appl. Phys. Lett. , 99, 016103, 2006.
40. R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, Appl. Phys. Lett. , 69, 1997, 1996.
41. H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, J. Appl. Phys. , 81, 2825, 1997.
42. Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, Chem. Phys. Lett. , 386, 128, 2004.
43. S. F. Hsu, C. C. Lee, S. W. Hwang, H. H. Chen, C. H. Chen, and A. T. Hu, Thin Solid Films, 478, 271, 2005.
44. S. F. Hsu, C. C. Lee, S. W. Hwang, and C. H. Chen, Appl. Phys. Lett. , 86, 253508, 2005.
45. D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, and H. Benisty, IEEE J. Sel. Top. Quantum Electron, 8, 189, 2002.
46. E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cao, and G. J. Zydzik, Science, 265, 943, 1994.
47. R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, Appl. Phys. Lett. , 77, 1262, 2000.
48. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, J. Appl. Lett. , 83, 2377, 1998.
49. C. M. Ramsdale and N. C. Greenham, J. Phys. D, 36, L29-L34, 2003.
50. 陳金鑫、黃孝文,OLED有機電激發光材料與元件,五南圖書2005年出版。