研究生: |
謝秉衡 HENG, HSIEH-PING |
---|---|
論文名稱: |
結合適應性模糊類神經網路技術之H∞補償器之推導與其輕軌列車主動懸吊避震系統之應用 The Design of Adaptive Neural-Fuzzy H∞ Compensator for the Suspension System of Light-Real Vehicle |
指導教授: |
黃正能
Huang, Cheng-Neng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 主動懸吊,輕軌列車,H∞,模糊化類神經網路 |
外文關鍵詞: | active suspension,LTR,H∞,Neural-Fuzzy |
相關次數: | 點閱:77 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一種基於綜合演算法則之多目標優化方法來輔助設計輕軌車於垂直方向的主動懸吊系統之控制力量參數。此法可同時考慮輕軌車在不平整軌道上的乘坐舒適性、一次懸吊彈簧變形量、二次懸吊彈簧變形量、在爬坡軌道上的一次懸吊彈簧變形量及在爬坡軌道上的二次懸吊彈簧變形量等五項因素,並可對該五項因素作不同權重的選擇及折衝。經由此法可確保輕軌車於不平整軌道或爬坡軌道上的所有懸吊彈簧之總變形量在可允許之變形範圍內。本文將使用適應性倒傳遞模糊H∞綜合控制器,因為在非線性系統下,往往因為狀態估測誤差或干擾,無法確保追蹤誤差在系統的可容許範圍內,所以使用此綜合控制器,可以大大的減少追蹤誤差並將低系統的干擾,及模糊基底函數的估測誤差降低,使得系統在擁有強健性能下,也能有良好的追蹤性能。電腦模擬結果顯示,本文所設計適應性倒傳遞模糊H∞綜合控制器,能使系統在不確定性的環境下,達到預設系統性能之設定。
In this study, a systematic and effective optimization scheme is proposed for the design of vertical active suspension force controller of Light Rail Vehicle using Adaptive Neural-Fuzzy H∞ composite Compensator. This design methodology of the active suspension system will simultaneously consider the following stactors : the sitting quality on the LRT under track irregularity , the primary and secondary suspension deflection, due to track irregularity and the gradient factors. By using propose control scheme, the total strains in each suspending system on the LRT can be minimized to an allowable region under the conditions of track irregularity and gradient factor. In this research, an Adaptive Neural-Fuzzy H∞ composite control scheme is proposed to reject the system disturbance and minimize the estimating errors, so that the LTR confortability can be guaranteed. Computer simulation results reveals that the proposed control methodology can achieve the designed performance of the LRT under environmental uncertainties.
[1]Harris, C.M. “Shock and Vibration Handbook" ed, Mc
GRAW-Hill Book Company, pp.44-1~44-58 (1988)
3rd
[2]K. S. Narendra and P. Kudva. “Stable adaptive schemes
for system identification and control Part I Part II". IEEE.
Tran. on S.M.C 1974.Nov.6.
[3]R. V. Monopoli “Model reference adaptive control with an
augmented evror signal" IEEE. Tran. A. C. 1974. On. Pp.
474-484.
[4]J.-S. Roger Jang, “ANFIS : Adaptive-network based fuzzy
inference systems," IEEE. Tran. On Systems, Man, and
Cybernetis, Vol. 23,No.3, pp. 665-685, 1993.
[5] J.-S. Roger Jang, “ANFIS : Adaptive-network-based fuzzy
inference systems," IEEE Trans. On systems, Man, and
Cybernetics, Vol. 23, No.3,pp.665-685,1993.
[6] C.-T. lin and C. S. G. Lee, “Neural-network-based fuzzy
logic control and descision system," IEEE Trans. On Computers,
Vol40,No. 12, pp. 1320-1336, 1991.
[7] C.-T. lin and C. S. G. George Lee, Neural Fuzzy systems:
A Neuro-Fuzzy Synergism to Intelligent Systems, Prentice-Hall
International, Inc.,1996.
[8] L.-X Wang and J.M. Mendel, “Back-propagation fuzzy systems
as nonlinear system identifiers," Int. Conf. On fuzzy Systems,
San Diego, 1992.
[9] L.-X Wang Adaptive Fuzzy System and Control : Design and
Stability Analysis, Prentice Hall, Englowood Cliffs,NJ,1994.
[10] John C. Doyle, Keith Glover, Pramod P. Khargoner and Bruce
A. Francis, “State-Space Solution To Standard H2 And H∞ Control
Problem' ,IEEE Trans. Automatic Control, Vol. 34, No. 8, pp.
831-847, 1989
[11] Hwang, C.N., “Formulation of H2 and H-optimal
controlproblems A variational approach", Journal of the
Chinese Institute of Engineering, vol. 16, no. 6, pp. 853-866,
1993.
[12] L, X. Wang, Adaptive Fuzzy Systems and Control : Design
and Stability Analysis, Prentice-Hall Inc., 1994
[13] Wei-Song Lin and Chun-Sheng Chen, “Neural-Fuzzy-Based
Direct Adaptive Controller Design For A Class of Uncertain
Multivariable Nonlinear Systems"
[14] B. S. Chen, C. H. Lee and Y. C. Chang, "H" Tracking Design
of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach,"
IEEE Trans. Fuzzy Systems, vol. 4, pp. 32-43, 1996.
[15]B. D. O. Anderson and J. B. Moore. Optimal control-Linear
Quadratic Methods, Prentice Hall, 1990.
[16] Mei, T. X. and Goodall, R. M. Use of multiobjective genetic
algorithms to optimize inter-vehicle active sus-pensions. Proc.
Instn Mech. Engrs, Part F, Journal of Rail and Rapid Transit,
2002, 216, 53-63.
[17] Li, H. and Goodall, R. M. Linear and non-linear sky-hook
damping control laws for active railway suspen-sions. Control
Engng Practice, 1999, 7, 843-850
[18] Tsao, Y. J. and Chen, R. The design of an active suspension
force controller using genetic algorithms with maximum stroke
constraints. Proc. Instn Mech. Engrs, Part D, Journal of
Automobile Engineering, 2001, 215, 317-327.
[19]韓曾晉, “適應控制系統" ,科技圖書股份有限公司 ,2002 年3
月
[20] 楊憲東,“ 控制理論與應用’’ 全華科技圖書股份公司,1997.