簡易檢索 / 詳目顯示

研究生: 黃煒中
Haung, Wei-Chung
論文名稱: 使用微波水熱法製備氮摻雜之介孔洞二氧化鈦球珠應用於光催化
Microwave-assisted hydrothermal synthesized nitrogen-doped TiO2 mesoporous beads photocatalysts for enhanced visible light response
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 107
中文關鍵詞: 光催化TiO2微波水熱法
外文關鍵詞: Photocatalyst, TiO2, Microwave-hydrothermal, Beads
相關次數: 點閱:81下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗藉由二氧化鈦(TiO2)光觸媒之改質,一般不規則形狀TiO2奈米粒子,藉由本實驗特殊之製程方式改變其表面形貌,使之成長為介孔洞TiO2球珠形貌,其特色為大球珠本身為400~500 nm左右之奈米粒子,但是他卻是由20~30 nm的小的TiO2奈米粒子所聚集而成,此結構可以改善TiO2粉末之比表面積及電子電洞傳遞速度。除了表面形貌上之改質,更在TiO2晶格中摻雜N原子,以增進TiO2其在可見光下的吸收能力。再將改質完成後之氮摻雜介孔洞TiO2球珠應用於光降解實驗上。
    本實驗是探討藉由快速的微波輔助水熱法去製備氮摻雜的介孔洞TiO2球珠粉末,藉由溶膠凝膠法先行製備出非晶相TiO2球珠,再藉由兩次微波水熱法去製備介孔洞TiO2球珠,第一次微波水熱時先控制TiO2表面形貌,第二次微波水熱時添加氮來源使不純物摻雜進入TiO2晶格中。
    藉由X射線繞射儀和掃描式電子顯微鏡去分析其結晶結構和表面形貌,使用表面吸附儀測量改質後TiO2的比表面積,在使用可見光/紫外光光譜儀量測改質後TiO2在可見光下的吸收能力,及其改質後TiO2能帶之寬度,在表面化學鍵結分析可以確定是否具有氮摻雜入TiO2晶格,與氮摻雜於TiO2晶格之位置,最後在藉由將改質後TiO2溶於20 ppm亞甲基藍溶液中,測試其分解有機汙染物之能力。

    This work reports the synthesis and characterization of N-doped TiO2 mesoporous beads prepared by a two-cycled rapid microwave-assisted hydrothermal method using three different types of nitrogen dopants: diaminohezane, triethylamine, urea. In the first cycle, TiO2 mesoporous beads with controlled structures were synthesized at 200 ℃. The obtained beads were then subjected to a second cycle of microwave-assistaed hydrothermal process for doping with one of the aforementioned dopants. The sue of the second cycle is to maintain the integrity of the beads, which otherwise would be easily destroyed if the synthesis and doping processes are carried out at the same time. The crystalline structure of the N-doped TiO2 was examinedusing X-ray diffraction. The surface state and structure were investigated using X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. The absorption of N-doped TiO2 in the range of visible light was confirmed using UV-Vis spectroscopy. The self-assembled N-doped TiO2 red-shift in adsorption edge up to 420 nm. The obatined TiO2 was also dissloved in methyl blue solution to function photocatalyst and the catalytic activity was determined. The photocatalytic activity of all N-doped TiO2 can be found the N-doped TiO2 used dianimohexane as the nitrogen dopant decompose the organic pollution more complete and rapid than others .

    摘要 I Abstrate III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1-1 前言: 1 1-2 研究背景: 3 1-2-1 太陽光及紫外光: 3 1-2-2 光觸媒簡介: 6 1-3 研究動機與目的: 9 第二章 理論背景與文獻回顧 11 2-1 TiO2光觸媒: 11 2-1-1 TiO2晶體結構: 11 2-1-2 TiO2光催化反應: 16 2-1-3 TiO2光催化反應原理與機制: 17 2-2 水熱法: 21 2-2-1 傳統水熱法與微波輔助水熱法簡介: 21 2-2-2 水熱法長晶原理: 24 2-2-3 TiO2成長機制與比較: 26 2-3 TiO2之改質: 28 2-3-1 添加金屬原子: 30 2-3-2 添加金屬離子: 32 2-3-3 添加非金屬元素: 34 2-3-4 加入他種半導體: 37 2-4介孔洞二氧化鈦球珠: 39 第三章 實驗設備與方法 42 3-1 實驗設計與流程: 42 3-2 實驗步驟: 44 3-2-1 藥品與材料: 44 3-2-2實驗步驟: 45 3-2-3 粉末特性分析及原理 51 第四章 結果與討論 57 4-1 自製TiO2光觸媒之物理特性分析 57 4-1-1 X光繞射分析(XRD): 58 4-1-2 表面形貌分析(SEM): 63 4-1-3 比表面積分析與BJH孔徑分析: 69 4-2 自製TiO2光觸媒之化學特性分析 73 4-2-1 傅立葉轉換紅外線光譜分析(FTIR): 73 4-2-2 UV-vis光學分析: 76 4-2-3 XPS化學鍵結分析: 83 (一) 調整TiO2與1,6-己二胺之比例的影響: 83 (二) 以相同比例添加不同氮來源對摻雜的影響: 86 4-2-4 光降解測試: 94 第五章 結論 97 第六章 未來展望 98 第七章 參考文獻 99 附錄 106

    1. Grätzel, M., Powering the planet. Nature, 2000. 403(363).
    2. Climate Change. 2001(The Scientific Basis).
    3. Dennis J. Flood, A.R.B., A Simple Test Apparatus to Verify the Photoresponse of Experimental Photovoltaic Materials and Prototype Solar Cells. Physical Methods in Chemistry and Nano Science.
    4. Fujishima, A. and K. Honda, ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE. Nature, 1972. 238(5358): p. 37-+.
    5. Frank, S.N. and A.J. Bard, HETEROGENEOUS PHOTOCATALYTIC OXIDATION OF CYANIDE ION IN AQUEOUS-SOLUTIONS AT TIO2 POWDER. Journal of the American Chemical Society, 1977. 99(1): p. 303-304.
    6. 高濂、鄭珊、張青紅, 奈米光觸媒. 五南圖書出版股份有限公司, 2004.
    7. B.lian, Y.Z., Phase diagrams for ceramics figure. The American Ceramic Society Inc., 1975. 4150.
    8. 陳婉貞, TiO2擔載碳材用於甲基橙光降解之效能. 國立成功大學化工系碩論, 2009.
    9. Sclafani, A. and J.M. Herrmann, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. Journal of Physical Chemistry, 1996. 100(32): p. 13655-13661.
    10. A. Sclafani, L.P., and M. Schiavello, Influence of the Preparation Methods of TiO, on the Photocatalytic Degradation of Phenol in Aqueous Dispersion. J. Phys. Chem., 1990.
    11. T.R.N. Kutty, S.A., RRTARDING EFFECT OF SURFACE HYDROXYLATION ON TITANIDM(IV) OXIDE PHOTOCATALYST IN THR DEGRADATION OF PHRNOL materials Research Centre 1995.
    12. A.L.linsebigler, Photocatalysis on TiO2 Surface: Principles, Mechanisms, and Selected Results. Chemical Reviews, 1995. 95,735.
    13. Kudo, A., H. Kato, and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters, 2004. 33(12): p. 1534-1539.
    14. Matthews, R.W., An adsorption water purifier with in situ photocatalytic regeneration. Journal of Catalysis, 1988. 113(2).
    15. Rao, K.J., et al., Synthesis of inorganic solids using microwaves. Chemistry of Materials, 1999. 11(4): p. 882-895.
    16. Baghbanzadeh, M., et al., Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals. Angewandte Chemie-International Edition, 2011. 50(48): p. 11312-11359.
    17. Eckert, J.O., et al., Kinetics and mechanisms of hydrothermal synthesis of barium titanate. Journal of the American Ceramic Society, 1996. 79(11): p. 2929-2939.
    18. Yanagisawa, K. and J. Ovenstone, Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature. Journal of Physical Chemistry B, 1999. 103(37): p. 7781-7787.
    19. Chae, S.Y., et al., Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chemistry of Materials, 2003. 15(17): p. 3326-3331.
    20. Cheng, H.M., et al., HYDROTHERMAL PREPARATION OF UNIFORM NANOSIZE RUTILE AND ANATASE PARTICLES. Chemistry of Materials, 1995. 7(4): p. 663-671.
    21. Kim, C.S., et al., Solvotherinal synthesis of nanocrystalline TiO2 in toluene with surfactant. Journal of Crystal Growth, 2003. 257(3-4): p. 309-315.
    22. Choi, W.Y., A. Termin, and M.R. Hoffmann, The Role of Metal-Ion Dopants in Quantum-Sized Tio2 - Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics. Journal of Physical Chemistry, 1994. 98(51): p. 13669-13679.
    23. HE Chao, Y.Y., ZHOU Cai-Hua, HU Xing-Fang, Structure and Photocatalytic Activities of Ag/TiO2 Thin Films. Journal of inorganic Material, 2002.
    24. Liu, S.X., et al., A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 2004. 93-5: p. 877-884.
    25. Zhang, Y., et al., Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Applied Surface Science, 2009. 256(1): p. 85-89.
    26. Hamal, D.B. and K.J. Klabunde, Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. Journal of Colloid and Interface Science, 2007. 311(2): p. 514-522.
    27. Lv, K.L., et al., (Bi, C and N) codoped TiO2 nanoparticles. Journal of Hazardous Materials, 2009. 161(1): p. 396-401.
    28. Nakamura, R., T. Tanaka, and Y. Nakato, Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. Journal of Physical Chemistry B, 2004. 108(30): p. 10617-10620.
    29. Sato, S., PHOTOCATALYTIC ACTIVITY OF NOX-DOPED TIO2 IN THE VISIBLE-LIGHT REGION. Chemical Physics Letters, 1986. 123(1-2): p. 126-128.
    30. Asahi, R., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001. 293(5528): p. 269-271.
    31. Burda, C., et al., Enhanced nitrogen doping in TiO2 nanoparticles. Nano Letters, 2003. 3(8): p. 1049-1051.
    32. Sathish, M., B. Viswanathan, and R.P. Viswanath, Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti-melamine complex. Applied Catalysis B-Environmental, 2007. 74(3-4): p. 307-312.
    33. Rattanakam, R. and S. Supothina, Visible-light-sensitive N-doped TiO2 photocatalysts prepared by a mechanochemical method: effect of a nitrogen source. Research on Chemical Intermediates, 2009. 35(3): p. 263-269.
    34. Serpone, N., et al., EXPLOITING THE INTERPARTICLE ELECTRON-TRANSFER PROCESS IN THE PHOTOCATALYZED OXIDATION OF PHENOL, 2-CHLOROPHENOL AND PENTACHLOROPHENOL - CHEMICAL EVIDENCE FOR ELECTRON AND HOLE TRANSFER BETWEEN COUPLED SEMICONDUCTORS. Journal of Photochemistry and Photobiology a-Chemistry, 1995. 85(3): p. 247-255.
    35. Kanai, N., et al., Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering. Vacuum, 2004. 74(3-4): p. 723-727.
    36. Huang, Q. and L. Gao, A simple route for the synthesis of rutile TiO2 nanorods. Chemistry Letters, 2003. 32(7): p. 638-639.
    37. Zhang, Q.H., et al., Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals. Chemistry Letters, 2002(2): p. 226-227.
    38. Tsai, C.C. and H.S. Teng, Regulation of the physical characteristics of Titania nanotube aggregates synthesized from hydrothermal treatment. Chemistry of Materials, 2004. 16(22): p. 4352-4358.
    39. Ke, C.R. and J.M. Ting, Anatase TiO2 beads having ultra-fast electron diffusion rates for use in low temperature flexible dye-sensitized solar cells. Journal of Power Sources, 2012. 208: p. 316-321.
    40. Chen, D.H., et al., Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm). Journal of the American Chemical Society, 2010. 132(12): p. 4438-4444.
    41. Liu, W.X., Z.Q. Feng, and W.B. Cao, Preparation of large-area dye-sensitized solar cells based on hydrothermally synthesized nitrogen-doped TiO2 powders. Research on Chemical Intermediates, 2013. 39(4): p. 1623-1631.
    42. Matsui, H., et al., Epitaxial growth and characteristics of N-doped anatase TiO2 films grown using a free-radical nitrogen oxide source. Journal of Applied Physics, 2005. 97(12).
    43. Tsai, C.C., J.N. Nian, and H.S. Teng, Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Applied Surface Science, 2006. 253(4): p. 1898-1902.
    44. Lu, C.H. and M.C. Wen, Synthesis of nanosized TiO2 powders via a hydrothermal microemulsion process. Journal of Alloys and Compounds, 2008. 448(1-2): p. 153-158.
    45. Xu, Q.C., et al., Enhanced photocatalytic activity of C-N-codoped TiO2 films prepared via an organic-free approach. Journal of Hazardous Materials, 2011. 188(1-3): p. 172-180.
    46. Zheng, C.L., et al., Photo-oxidation of gas-phase cyclohexane species over nanostructured TiO2 fabricated by different strategies. Separation and Purification Technology, 2009. 67(3): p. 326-330.
    47. Okato, T., T. Sakano, and M. Obara, Suppression of photocatalytic efficiency in highly N-doped anatase films. Physical Review B, 2005. 72(11).
    48. Lin, Z.S., et al., New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. Journal of Physical Chemistry B, 2005. 109(44): p. 20948-20952.
    49. Yang, K.S., Y. Dai, and B.B. Huang, Study of the Nitrogen concentration influence on N-Doped TiO2 Anatase from First-Principles Calculations. Journal of Physical Chemistry C, 2007. 111(32): p. 12086-12090.
    50. Trapalis, C., et al., SOL-GEL PROCESSING OF TITANIUM-CONTAINING THIN COATINGS .2. XPS STUDIES. Journal of Materials Science, 1993. 28(5): p. 1276-1282.
    51. Yu, J.G., X.J. Zhao, and Q.N. Zhao, Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method. Materials Chemistry and Physics, 2001. 69(1-3): p. 25-29.
    52. Jensen, H., et al., XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Applied Surface Science, 2005. 246(1-3): p. 239-249.
    53. Pouilleau, J., et al., Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy. Journal of Materials Science, 1997. 32(21): p. 5645-5651.
    54. Cong, Y., et al., Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. Journal of Physical Chemistry C, 2007. 111(19): p. 6976-6982.
    55. Di Valentin, C., et al., Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. Journal of Physical Chemistry B, 2005. 109(23): p. 11414-11419.
    56. Wang, J.W., et al., An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: Visible-light-induced photodecomposition of methylene blue. Journal of Physical Chemistry C, 2007. 111(2): p. 1010-1014.
    57. Sathish, M., et al., Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of Materials, 2005. 17(25): p. 6349-6353.
    58. Hurum, D.C., et al., Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. Journal of Physical Chemistry B, 2003. 107(19): p. 4545-4549.
    59. Kawahara, T., et al., Photocatalytic activity of rutile-anatase coupled TiO2 particles prepared by a dissolution-reprecipitation method. Journal of Colloid and Interface Science, 2003. 267(2): p. 377-381.

    下載圖示 校內:2016-08-28公開
    校外:2018-08-28公開
    QR CODE