| 研究生: |
粘駿楠 Nian, Jun-Nan |
|---|---|
| 論文名稱: |
碳電極之氧官能基對電化學電容之影響 Influence of Oxygen Functionalities on the Performance of Carbon Electrodes of Electrochemical Capacitors |
| 指導教授: |
鄧熙聖
Teng, Hsishent |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 硝酸處理 、氧化 、雙層電容量 、活性碳電極 、孔洞電極 、交流阻抗 、活性碳 、電化學電容器 |
| 外文關鍵詞: | oxidized carbon electrode, double layer capacitance, a.c. impedance, porous electrode, oxidation, nitric acid treatment, activated carbon, electrochemical capacitors |
| 相關次數: | 點閱:84 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文可分為兩部分:第一部分為探討碳電極上之氧官能基影響電化學電容的行為,標題為“硝酸氧化之活性碳電極對電化學電容之改善”。在第二個部分中探討不同氧含量的碳電極對電容器之交流阻抗之影響,標題為“以碳極為基材之電化學電容器其表面氧官能基對阻抗行為的影響”。
第一部分為硝酸氧化活性碳纖維布,並在氮氣下利用不同溫度鍛燒,並探討碳纖維布上之氧官能基對電化學電容器性能之影響,電容器性能測試是以1M硫酸為電解質,電位範圍為-0.6至0.6V,隨著氧化的處理發現碳的比電容上升,利用temperature programmed desorption (TPD)分析表面之複合物,顯示出雙層電容量隨著釋出-CO之吸附物的增加而增加,但隨著釋出-CO2之吸附物的增加而減少,此才因離子在微孔中移動的阻力上升所導致,由於氧化的影響使得纖維布和襯裡的金屬片之間的電阻上升,硝化後再經氮氣下450℃鍛燒,所得之電容量增加40%,且不增加其總電阻,其原因為在450℃鍛燒後移除了主要的釋出-CO2之脫附物,並保持原有之釋出-CO之吸附。
第二部分為用交流阻抗光譜來分析,由不同表面氧官能基之活性碳電極組成電化學電容器,藉由硝酸氧化處理後,再經150至900℃不同溫度下鍛燒可製成含不同氧官能基的碳電極。阻抗光譜顯示總電阻主要來自於纖維之間的接觸電阻,氧官能基會使得接觸電阻的上升,故總電容量主要是由於內部微孔介面所貢獻。氧化使得電極之比電容上升,但在熱處理溫度450℃時有最高的電容量。用常相元件來分析電容的行為時顯示出一偏離理想之電容行為,顯示在碳微孔中的低電阻和決定能量儲存的雙層機構一樣重要。同樣地電容量的上升主要來自於氧化所產生之雙層機構。在低溫處理過之碳電極其行為愈偏離理想電容,此指出含釋出CO2之氧官能基會加大聚集效應並阻礙充電過程,而含會釋出CO之氧官能基則為增進雙層電容量之原因。
This dissertation is divided into two parts. The first part is to study how the oxygen functional groups on carbon electrodes can affect the electrochemical capacitance. The titile is “Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance”. In the second part, we focus on the influence of the functional groups on the impedance behavior of electrochemical capacitors. The title is “Influence of Oxygen Functional Groups on the Impedance Behavior of Carobn-Based Electrochemical Capacitors”.
In the first part, nitric acid oxidation on activated carbon fabric in combination with calcination in N2 at different temperatures was conducted to explore the influence of surface carbon-oxygen complexes on the performance of electrochemical capacitors fabricated with the carbon fabric. The performance of the capacitors was tested in 1 M H2SO4 within a potential range of 0.6 and 0.6 V. The specific capacitance of the carbon was found to increase upon oxidation. Surface complex analysis using temperature programmed desorption showed that the double-layer capacitance was enhanced due to the presence of CO-desorbing complexes while CO2-desorbing complexes exhibited a negative effect. The micropore resistance for ion migration was low for these carbons. The electrical connection resistance between the fabric and the backing plate as well as that between the carbon fibers accounted for the major proportion of the overall resistance and was shown to increase due to the oxidation. A capacitance increase of more than 40% has been achieved, without increasing IR drop, by nitric acid oxidation followed by 450 C calcination that was shown to remove the majority of the CO2- desorbing complexes while retain the CO-desorbing.
In the second part, electrochemical capacitors made of activated carbon fabrics containing different compositions of surface oxides are analyzed using a.c. impedance spectroscopy. The oxides are introduced and controlled via HNO3 treatment followed by thermal treatment at different temperatures within 150900 C. The impedance spectra showed that the overall resistance mainly came from the fiber contact resistance, which was an increasing function of oxide number, while the overall capacitance was contributed by the interface inside micropores. Oxidation enhanced the specific capacitance of the electrodes, but it was found that a thermal treatment temperature of 450 C gave a highest capacitance. Constant phase element analysis of the capacitive behavior showed insignificant deviation from ideality, indicating the low resistance in carbon micropores as well as the domination of double layer mechanism in energy storage. Thus, the capacitance increase from oxidation resulted mainly from the double layer mechanism as well. The deviation from ideality was more obvious for lower temperature treated electrodes, indicating that the CO2-desorbing complexes may enhance formation of aggregates to retard the charge process while the CO-desorbing complexes are responsible for the promotion of double layer capacitance.
1. M. Suzuki, Adsorption Engineering, Elsevier: Tokyo, (1990).
2. J. S. Mattson, and Jr. H. B. Mark, Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York, (1998).
3. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons: New York, (1988).
4. H. D. Young, Physics, Addison-Wesley Publishing Co.: New York, (1992).
5. A. J. Bard, and L. R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, (1996).
6. D. Qu, and H. Shi, “Studies of Activated Carbons in Double-Layer Capacitors”, J. Power Sources 74, 99 (1998).
7. C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry, Wiley-Vch: New York, (1998).
8. J. S. Mattson, and Jr. H. B. Mark, Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York, (1998).
9. M. J. Muñoz-Guillena, M. J. Illàn-Gómez, J. M. Martín-Martínez, A. Linares-Solano, C. Salinas-Martínez, and de Lecea, “Activated Carbons from Spanish Coal. 1. Two-Stage CO2 Activation”, Energy Fuels 9, 6 (1992).
10. S. Lowell, and J. E. Shields, Powder Surface Area and Porosity, 3rd ed.; Chapman & Hall: London, (1991).
11. D. M. Ruthven, Principles of Adsorption and Adsorption Process John Wiley & Sons: New York (1984).
12. D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press: London, (1998).
13. R. Kötz and M. Carlen, Electrochim. Acta, 45, 2483 (2000).
14. M. Ishikawa, M. Ihara, M. Morita, and Y. Matsuda, Electrochim. Acta, 40, 2217 (1995).
15. Y. Matsuda, K. Inoue, H. Takeuchi, and Y. Okuhama, Solid State Ionics, 113-115, 103 (1998).
16. L. Bonnefoi, P. Simon, J. F. Fauvarque, C. Sarrazin, and A. Dugast, J. Power Sources, 79, 37 (1999).
17. T.-C. Weng and H. Teng, J. Electrochem. Soc., 148, A368 (2001).
18. H. Shi, Electrochim. Acta, 41, 1633 (1996).
19. I. Tanahashi, A. Yoshida, and A. Nishino, J. Electrochem. Soc., 137, 3052 (1990).
20. T. Nagaoka and T. Yoshino, Anal. Chem., 58, 1037 (1986).
21. T. Nagaoka, T. Fukunaga, T. Yoshino, I. Watanabe, T. Nakayama, and S. Okazaki, Anal. Chem., 60, 2766 (1988).
22. J. M. Miller, B. Dunn, T. D. Tran, and R. W. Pekala, J. Electrochem. Soc., 144, L309 (1997).
23. A. Nakamura, T. Inui, N. Kinomura, and T. Suzuki, Carbon, 38, 1361 (2000).
24. F. Adib, A. Bagreev, and T. Bandosz, Langmuir, 16, 1980 (2000).
25. R. L. McCreery, K. K. Cline, C. A. McDermott, and M. T. McDermott, Colloids Surfaces A, 93, 211 (1994).
26. T. Momma, X. Liu, T. Osaka, Y. Ushio, and Y. Sawada, J. Power Sources, 60, 249 (1996).
27. B. E. Conway, Electrochemical Supercapacitors, p. 259, Kluwer Academic / Plenum Publishers, New York (1999).
28. J. Koresh and A. Soffer, J. Electrochem. Soc., 124, 1379 (1990).
29. J. S. Noh and J. A. Schwarz, Carbon, 28, 675 (1990).
30. S. S. Barton, M. J. B. Evans, E. Halliop, and J. A. F. MacDonald, Carbon, 35, 1361 (1997).
31. Y. Otake and R. G. Jenkins, Carbon, 31, 109 (1993).
32. L. R. Radovic and C. Sudhakar, in Introduction to Carbon Technologies, H. Marsh, E. A. Heintz, F. Rodríguez-Reinoso, Editors, p. 103, University of Alicante, Alicante, Spain (1997).
33. F. Rodríguez-Reinoso, M. Molina-Sabio, and M. T. González, Carbon, 33, 15 (1995).
34. C. Moreno-Castilla, J. Rivera-Utrilla , J. P. Joly, M. V. López-Ramón, M. A. Ferro-García, and F. Carrasco-Marín, Carbon, 33, 1417 (1995).
35. X. Liu and T. Osaka, J. Electrochem. Soc., 144, 3066 (1997).
36. S. Yoon, J. Lee, T. Hyeon, and S. M. Oh, J. Electrochem. Soc., 147, 2507 (2000).
37. R. W. Couglin and F. S. Ezra, Environ. Sci. Technol., 2, 291 (1968).
38. T. Asakawa and K. Ogino, J. Colloid Interface Sci., 102, 348 (1984).
39. R. de Levie, Electrochim. Acta, 8, 751 (1963).
40. L. G. Austin and E. G. Gagnon, J. Electrochem. Soc., 120, 251 (1973).
41. J. R. Miller, in Electrochemical Capacitors, F. M. Delnick and M. Tomkiewicz, Editors, PV 95-29, p. 246, The Electrochemical Society Series, Pennington, NJ (1996).
42. E. Gileadi, Electrode Kinetics, p. 222, VCH Publishers, New York (1993).
43. T. Osaka, X. Liu, M. Nojima, and T. Momma, J. Electrochem. Soc., 146, 1724 (1999).
44. A. Nishino, J Power Source 60 (1996) 137.
45. J. R. Macdonald, D. R. Franceschetti, in: J. R. Macdonald (Ed.), Impedance Spectroscopy, John Wiley & Sons, New York, (1987) 84.
46. E. Warburg, Ann. Phys. Chem. 67 (1899) 493.
47. T. Pajkossy, T. Wandlowski, D.M. Kolb, J. Electroanal. Chem. 414 (1996) 209.
48. T. Pajkossy, Solid State Ionics 94 (1997) 123.
49. I. D. Raistrick, in: J. McHardy, F. Ludwig (Eds.), Electrochemistry of semiconductors and electronics: processes and devices, Noyes Publications, Park Ridge, NJ, (1992).
50. R. de Levie, in: P. Delahay (Ed.), Advances in Electrochemistry and Electrochemical Engineering, vol. VI, Interscience, New York, (1967) 329.
51. H. Keiser, K.D. Beccu, M.A. Gutjahr, Electrochim. Acta 21 (1976) 539.
52. K. Eloot, F. Debuyck, M. Moors, A.P. van Peteghem, J. Appl. Electrochem. 25 (1995) 326.
53. R. de Levie, Electrochim. Acta 10 (1965) 113.
54. A. Hmelin, S. Morin, J Richer and J. Lipkowski, J. Electroanal. Chem., 285 (1990) 249 (Appedix).
55. P. Zoltowski, Journal of Electroanalytical Chemistry 443 (1998) 149.
56. F. Rodríguez-Reinoso, M. Molina-Sabio, and M. T. González, Carbon, 33 (1995) 15.
57. X. Liu, T. Osaka, J. Electrochem. Soc., Vol. 143, No. 12, Decemeber 1996.
58. T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, Journal of Sources 60 (1996) 249.
59. E. G. Gagnon, J. Electrochem. Soc., 122 (1975) 521.
60. E. G. Gagnon, J. Electrochem. Soc., 120, 1052 (1973); J. Electrochem. Soc., 121 (1974) 512.
61. O. B. Yang, J. C. kim, J. S. Lee, Y. G. Kim, Ind. Eng. Chem. Res. 32 (1992) 1692.
62. Christopher M. A. Brett, Ana M.O. Brett, Electrochemistry: Principles, Methods, and Applications, Oxford New York (1993).