| 研究生: |
吳辰佑 Wu, Chen-Yu |
|---|---|
| 論文名稱: |
混再生磚細粒料混凝土柱反覆側推及耐震行為分析 Cyclic Lateral Loading and Seismic Performance Analysis of RC Columns with Blended Recycled Fine Brick Aggregate |
| 指導教授: |
劉光晏
Liu, Kuang-Yen |
| 共同指導教授: |
阿力
Alexander, B. Sturm |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 混磚砂細粒料混凝土柱 、反覆側推 、遲滯迴圈 、耐震行為 、側推分析 |
| 外文關鍵詞: | Recycled fine brick aggregates RC column, Cyclic lateral loading, Hysteresis loops, Seismic performance, Pushover |
| 相關次數: | 點閱:113 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於城市化進程加快,全球每年用於生產混凝土的砂石用量增加,天然砂石的過度開採將破壞生態系統,另一方面又因都更計畫拆卸老舊建設產生大量的營建剩餘土石方,其中含有大量硬固混凝土塊及磚塊,國內目前多採掩埋方式處理,或是僅製成再生粒料後應用於力學需求較低之工程。近年,國際上已有許多將再生粒料應用於結構體的案例,而國內在結構混凝土中納入再生粒料之實驗數據不多,因此對於此方式尚未具有信心,在當前環保意識增強的背景下,應積極推廣並擴大再生粒料應用範圍。
因此,本研究針對B5 類營建剩餘土石方中佔比多數的廢磚瓦,經由興磊砂石場進行回收、破碎、研磨等技術製程,成為符合CNS 1240規範之細粒料—混磚砂細粒料後,用來取代天然細粒料製成新拌混凝土,並製作3座混磚砂細粒料混凝土RC柱構件,同時也製作3座一般天然粒料混凝土柱作為對照組,於國震中心台南實驗室進行反覆側推實驗,探討混磚砂細粒料混凝土柱受到不同軸力下之側力-位移關係,並以ACI 374.1標準評估耐震能力,最後再以TEASPA及SERCB輔助ETABS建立塑鉸進行側推分析,模擬及還原實驗結果。
實驗結果顯示,混磚砂細粒料混凝土柱之最大側向力皆略高於一般混凝土柱,且混磚砂細粒料混凝土柱遲滯迴圈飽滿,無握裹滑移現象,各項消能行為(位移韌性、等值遲滯阻尼比、回復勁度比等)皆與一般混凝土柱相似,甚至更為優異。混磚砂細粒料混凝土柱試體通過ACI 374.1勁度及韌性檢核;強度檢核方面,與一般混凝土柱試體相同,僅高軸壓試體未通過檢核,判斷係因P-Δ效應提高了最大強度,但使後期強度下降劇烈,無法直接判斷係使用混磚砂細粒料混凝土導致。
分析結果顯示,不論使用TEASPA或是SERCB輔助ETABS建立塑鉸進行側推分析,皆可有效模擬及還原混磚砂細粒料混凝土柱之側推行為,可供日後結構設計師欲將磚砂混凝土運用於結構柱時,能夠準確預估其耐震行為進行設計。
This study processes bricks from construction surplus soil to produce recycled fine aggregates. These recycled fine bricks aggregates were then used to replace natural fine aggregates to fabricate three recycled brick aggregates(RBA) concrete RC column specimens, while three conventional natural aggregates(NA) concrete columns were simultaneously made as control specimens. Cyclic lateral loading experiments were conducted at the Tainan Laboratory of the National Center for Research on Earthquake Engineering (NCREE) to examine the force-displacement relationship of the RBA columns under varying axial forces. The seismic performance was evaluated according to ACI 374.1 standards. Finally, pushover analysis was performed using TEASPA and SERCB auxiliary ETABS to establish plastic hinges, simulating and replicating the experimental results.
The experimental results showed that the maximum lateral force of the RBA columns was slightly higher than that of the NA columns. Furthermore, the hysteresis loops of the RBA columns were full, with no bond slip phenomena, and all energy dissipation behaviors were similar to or even better than those of the NA concrete columns. The RBA column specimens passed the ACI 374.1 stiffness and ductility checks. In terms of strength checks, the RBA columns were the same as the NA column specimens, with only the high axial pressure specimen failing. This is because the high axial pressure ratio increased the maximum strength, but resulted in a significant post-peak strength decline, making it difficult to directly attribute to the use of RBA.
The analysis results indicated that the push-over behavior of the RBA columns could be effectively simulated and replicated using either TEASPA or SERCB auxiliary ETABS to establish plastic hinges. This provides structural designers with accurate predictions of the seismic performance of RBA columns for future structural applications.
[1] P.K. Mehta, Reducing the environmental impact of concrete, Concrete. Int. 23(2001) 61–66.
[2] Bo Wang, Libo Yan, Qiuni Fu, Bohumil Kasal, A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete, Resources, Conservation & Recycling 171 (2021) 105565.
[3] J.M. Khatib, Properties of concrete incorporating fine recycled aggregate, Cement and Concrete Research 35 (2005) 763–769.
[4] F. Debieb, S. Kenai, The use of coarse and fine crushed brick as aggregate in concrete, Construction and Building Materials 22 (2008) 886–893.
[5] Ali A. Aliabdo, Abd-Elmoaty M. Abd-Elmoaty, Hani H. Hassan b, Utilization of crushed clay brick in concrete industry, Alexandria Engineering Journal (2014) 53 151-168.
[6] Zhi Ge, Yujie Feng, Hongzhi Zhang, Jianzhuang Xiao, Renjuan Sun, Xiangyang Liu, Use of recycled fine clay brick aggregate as internal curing agent for low water to cement ratio mortar, Construction and Building Materials 264 (2020) 120280.
[7] 廖廷睿,⸢混磚砂混凝土力學性能及抗剪強度研究⸥,國立成功大學土木工程研究所,台南,2023。
[8] Bektas, F., Wang, K., & Ceylan, H., Effects of crushed clay brick aggregate on mortar durability. Construction and Building Materials, 23(5) (2009) 1909-1914.
[9] Paulo B. Cachim, Mechanical properties of brick aggregate concrete, Construction and Building Materials 23 (2009) 1292–1297.
[10] P.K. Mehta, Global concrete industry sustainability, Concrete. Int. 31 (2009) 45–48.
[11] S. Wild, J.M. Khatib, M. O’Farrell, B.B. Sabir, S.D. Addis, The potential of fired brick clay as a partial cement replacement material, In: R.K. Dhir, T.D. Dyer (Eds.), International Conference—Concrete in the Service of Mankind: Concrete for Environment Enhancement and Protection, Dundee, 24 – 28 June (1996) pp. 685 – 696.
[12] H.S. Esmaeeli, Y. Farnam, D.P. Bentz, P.D. Zavattieri, W.J. Weiss, Numerical simulation of the freeze–thaw behavior of mortar containing deicing salt solution, Mater. Struct. 50 (1) (2016) 96.
[13] G. Ye, Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials, (2003).
[14] Basit, A., Hameed, R., Abbas, S., Karam, M. S., Shahzad, S., Kazmi, S. M. S., & Munir, M. J. Impact of Recycled Concrete and Brick Aggregates on the Flexural and Bond Performance of Reinforced Concrete. Applied Sciences, 14(7), (2024) 2719.
[15] CHOI, Won-Chang; YUN, Hyun-Do. Compressive behavior of reinforced concrete columns with recycled aggregate under uniaxial loading. Engineering structures, 2012, 41: 285-293.
[16] ACI Committee 318, “Building Code Requirements for Structural Concrete and Commentary,” American Concrete Institute, Farmington Hills, 2014.
[17] 邱聰智、鍾立來、涂耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建,「臺灣結構耐震評估與補強技術手冊(TEASPA V4.0)」,國家地震工程研究中心,報告編號: NCREE-20-005,台北,2020年。
[18] MacGregor, J. G., “Reinforced Concrete: Mechanics and Design. 3rd Edition, ” Englewood Cliffs, NJ: Prentice Hall Inc. 1997, 939 pp.
[19] 李宏仁、黃世建,「鋼筋混凝土結構不連續區域之剪力強度評估―軟化壓拉桿模型簡算法之實例應用」,中華民國結構工程學會,結構工程,第17卷,第4期,第53-70頁,2002年。
[20] ASCE/SEI 41-13, “Seismic Evaluation and Retrofit of Existing Buildings (41-13),’’ American Society of Civil Engineers (ASCE), Reston, VA, 2014, 518 pp.
[21] Paulay, T., and Priestley, M. J. N., “Seismic Design of Reinforced Concrete and Masonry Buildings,” John Wiley & Sons, Inc., New York, 1992, 744 pp.
[22] 林建宏、宋裕祺、蔡益超、賴明俊、林冠禎、鄒本駒,「鋼筋混凝土建築物耐震能力評估平台SERCB 補強模組之開發與建築物評估補強案例編撰」,內政部建築研究所協同研究報告,中華民國101年12月。
[23] 宋裕祺、蔡益超,「鋼筋混凝土建築物耐震能力詳細評估SERCB: 理論背景與系統操作」,中國土木水利工程學會,2023年3月。
[24] 余立偉,「1/2 縮尺非韌性鋼筋混凝土建築受近斷層地震之振動台實驗與分析」,國立成功大學土木工程研究所,台南,2019。
[25] ASTM C469 Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, 2009.
[26] FEMA, “Prestandard and Commentary for the Seismic Rehabilitation of Buildings,” FEMA 356, Washington D.C., USA, 2000.
[27] ACI Committee 374., “Acceptance criteria for moment frames based on structural testing and commentary(ACI 374.1-05)”, American Concrete Institute.
[28] 國家地震工程研究中心、中興工程顧問社,「臺灣結構耐震評估側推分析法TEASPA線上服務網頁使用手冊」,中華民國112年2月。
[29] Hoshikuma, J., Kawashima, K., Nagaya, K. and Taylor, A. W., “Stress-strain Model for Confined Concrete in Bridge Piers,” Journal of Structural Engineering, ASCE, Vol. 123, No. 5,1997.
[30] Mander, J.B., Priestley, M.J.N., and Park, R., “Theoretical Stress-Strain Model of Confined Concrete,” Journal of Structural Division, ASCE, Vol. 114, No. 8, pp.1804-1826, 1988.
[31] Hwang, S. J., Tsai, R. J., Lam, W. K., and Moehle, J.P. “Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions, ” ACI Structural Journal, Vol. 114, No. 5, 2017, pp. 1239-1248.