簡易檢索 / 詳目顯示

研究生: 邱麗芳
Chiu, Li-Fang
論文名稱: 螢光衍生化法及晶片電泳分析雌激素含量
Determination of Estrogens by Fluorescent Derivatization and Microchip Electrophoresis
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系碩士在職專班
Department of Chemistry (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 103
中文關鍵詞: 晶片電泳雌激素
外文關鍵詞: estrogen, chip
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雌激素是對女性生殖器官和女性第二性徵的發展和維護的激素,並且關係到懷孕及女性月經週期。
    近年來,許多新穎的分析技術,例如:LC-MS, GC-MS和其他技術發展偵測水、沉積物、組織和血漿中的雌激素。但是,較少研究有關於人體尿液中雌激素的定量分析。
    HPLC-FL之靈敏度比HPLC-UV為佳,且因大部分雌激素並無螢光性,故將雌激素衍生化使其具有螢光性,再以HPLC-FL來分析,如此將可提高化學分析法的靈敏度。
    以2-(4-carboxyphenyl)-5,6-dimethylbenzimidazole及Dansyl chloride當衍生試劑與雌激素反應。以2-(4-carboxyphenyl)
    -5,6-dimethylbenzimidazole當衍生試劑與雌激素反應時,反應條件為60 ℃下加入4-dimethylaminopyridine及N-(3-dimethylamino
    propyl)-N’-ethylcarbodiimide hydrochloride,反應30分鐘後,經固相萃取後,過濾以HPLC-FL分析,螢光偵測器之激發波長設定為336 nm,放射波長設定為440 nm。CDB-E1在濃度範圍1000 ppb~10 ppb間可得一檢量線y = 29758008.1185 x + 367851.5823,CDB-E2在濃度範圍1000 ppb~10 ppb間可得一檢量線y = 22597313.25 x + 103941.95其R2=0.9979,CDB-E3在濃度範圍1000 ppb~10 ppb間可得一檢量線 y = 15449204.69 x + 35943.84其R2=0.9993。CDB-estrone分法偵測極限為12.9 ppb,因最後上機分析注射量為20 μL,因此換算成重量為0.26 ng;CDB-estradiol(β)分法偵測極限為12.0 ppb,因最後上機分析注射量為20 μL,因此換算成重量為0.24 ng;CDB-estriol分法偵測極限為11.7 ppb,因最後上機分析注射量為20 μL,因此換算成重量為0.23 ng。若利用微晶片進行分析,本實驗使用壓力進樣方式,各衍生物配製濃度為5000 ppb。在壓力驅動進樣時所設定的幫浦流速為0.5 μL/分鐘,進樣時間皆為0.05分鐘,因此換算成重量為0.125 ng。以Dansyl chloride當衍生試劑與雌激素反應時,反應條件為60 ℃下加入0.5M sodium carbonate,反應30分鐘後,經固相萃取後,過濾以HPLC-FLUO分析,螢光偵測器之激發波長設定為350 nm,放射波長設定為550 nm。Dansyl-Estrone在濃度範圍2000 ppb~30 ppb間可得一檢量線y = 157414x + 2309.3其R2=0.9994,Dansyl-17βestadiol在濃度範圍2000 ppb~30 ppb間可得一檢量線y =162008.4 x + 4820.8其R2=0.9993,Dansyl-17α estadiol在濃度範圍2000 ppb~30 ppb間可得一檢量線 y = 101809x + 2198其R2=0.9996,Dansyl-17αethylestadiol在濃度範圍2000 ppb~30 ppb間可得一檢量線 y = 108974x + 1803其R2=0.9990,Dansyl-estriol在濃度範圍2000 ppb~30 ppb間可得一檢量線 y =94285x + 2154.8其R2=0.9995。Dansyl-estrone分法偵測極限為40.5 ppb,因最後上機分析注射量為20 μL,因此換算成重量為0.81 ng;Dansyl-17αestradiol分法偵測極限為27.3 ppb,因最後上機分析注射量為20 μL,因此換算成重量為0.55 ng;Dansyl-17β estradiol分法偵測極限為32.1 ppb,因最後上機分析注射量為20 μL,因此換算成重量為0.64 ng;Dansyl-17αethylestradiol分法偵測極限為40.8 ppb,因最後上機分析注射量為20 μL,因此換算成重量為0.82 ng;Dansyl-estriol分法偵測極限30.0 ppb,因最後上機分析注射量為20 μL,因此換算成重量為0.60 ng。由HPLC-MS的結果發現Dansyl-Estrone 、Dansyl-estradiol(β) 、Dansyl-17α-ethylestradiol及Dansyl-estriol的訊號,因HPLC-MS具有高精準度及專一性,故可以利用HPLC-ESI-MS來偵測更多雌激素的種類及其機制。

    Estrogens are hormones that are responsible for the development and maintenance of the female reproductive organs and female secondary gender characteristics. Estrogens also participate in the regulation of the menstrual cycle and in the maintenance of pregnancy.
    In recent years, many novel analytical techniques, such as LC-MS, GC-MS and other techniques have been developed for the determination of estrogens in water, sediment, tissue and plasma. However, few studies are available for the quantitative analysis of estrogens in human urine.
    To improve the detection sensitivity, we developed a simple fluorescence labeling method to detect estrogenic compounds in biological fluids.
    Two fluorescence reagents were attempted in this study, 2-(4-carboxyphenyl)-5,6-dimethylbenzimidazole and Dansyl chloride. For 2-(4-carboxyphenyl)-5,6-dimethylbenzimidazole derivatization 4-dimethylaminopyridine and N-(3-dimethylaminopropyl)-N’-ethyl
    -carbodiimide hydrochloride were mixed and the mixture was allowed to react for 30 minute at 60 ℃.The reaction mixture was then purified by SPE extraction and then filtered. The product was ready for HPLC-FL analysis using excitation (Ex) = 336 nm and emission (Em) = 440 nm. The standard curve ranging from 1000 ppb to 10 ppb was established for estrone was fitted into an equation of y =29758008.12x + 367851.58 with R2=0.9978. The detection limit of the method was determined to be 12.9 ppb at S/N = 3, which corresponds to 20 μL or 0.26 ng of the derivatized estrone . The standard curve ranging from 1000 ppb to 10 ppb was established for 17β-estradiol was fitted equation was y = 22597313.25 x + 103941.95 with R2=0.9979. The detection limit of the method was determined to be 12.0 ppb at S/N = 3, which corresponds to 20 μL or 0.24 ng of the derivatized 17β-estradiol. The standard curve ranging from 1000 ppb to 10 ppb was established for estriol was fitted equation was y = 15449204.69 x + 35943.84 with R2=0.9993. The detection limit of the method was determined to be 11.7 ppb at S/N = 3, which corresponds to 20 μL or 0.23 ng of the derivatized estriol. For the analysis by microchip electrophoresis under MEKC mode, using pressure injection, the detection limit was determined to be 5000 ppb or 0.125 ng and the analysis time was within 0.05 mins under the flow rate of 0.5 μL/min.
    For Dansyl chloride derivatization, 0.5M sodium carbonate was mixed and the mixture was allowed to react for 30 minute at 60 ℃. The reaction mixture was then purified by SPE extraction and then filtered. The product was ready for HPLC-FL analysis using excitation (Ex) = 350 nm and emission (Em) = 550 nm. The standard curve ranging from 2000 ppb to 30 ppb was established for estrone was fitted equation was y = 157414x + 2309.3 with R2=0.9994. The detection limit of the method was determined to be 40.5 ppb at S/N = 3, which corresponds to 20 μL or 0.81 ng of the derivatized estrone. The standard curve ranging from 2000 ppb to 30 ppb was established for 17α-estradiol was fitted equation was y = 101809x + 2198 with R2=0.9996. The detection limit of the method was determined to be 27.3 ppb at S/N = 3, which corresponds to 20 μL or 0.55 ng of the derivatized 17α-estradiol. The standard curve ranging from 2000 ppb to 30 ppb was established for 17β-estradiol was fitted equation was y =162008.4 x + 4820.8 with R2=0.9993. The detection limit of the method was determined to be 32.1 ppb at S/N = 3, which corresponds to 20 μL or 0.64 ng of the derivatized 17β-estradiol. The standard curve ranging from 2000 ppb to 30 ppb was established for estriol was fitted equation was y =94285x + 2154.8 with R2=0.9995. The detection limit of the method was determined to be 30.0 ppb at S/N = 3, which corresponds to 20 μL or 0.60 ng of the derivatized estriol. The standard curve ranging from 2000 ppb to 30 ppb was established for 17α-ethylestradiol was fitted equation was y = 108974x + 1803 with R2=0.9990. The detection limit of the method was determined to be 27.3 ppb at S/N = 3, which corresponds to 20 μL or 0.55 ng of the derivatized 17α-ethylestradiol.
    The method applied dansyl chloride as derivatization reagent for estrogenic compounds and combined with SPE column clean-up, followed by HPLC-ESI-MS detection. The detection limit was determined to be around 10 ppb for MS. The method was demonstrated to be a simple and useful method for the detection of Estrone, 17α-estradiol,17β-estradiol, Estriol and 17α-ethynylestradiol.
    In the future, the combination of microfluidic chip and MS detection may offer as a high efficiency and ultra sensitive method for the quantitative analysis of estrogenic compounds.

    總目錄 中文摘要.................................................Ⅰ 英文摘要.................................................Ⅳ 主文目錄.................................................Ⅸ 圖目錄...................................................Ⅷ 表目錄...................................................ⅩⅤ 附錄目錄.................................................ⅩⅤⅡ 第一章 序論 1.1 前言................................................1 1.2 雌激素及其代謝......................................2 1.3 雌激素分析方法......................................3 1.4 螢光衍生化方法......................................5 1.5 研究方向與架構......................................6 第二章 利用高效能液相層析連接螢光偵測器及晶片 式電泳分析雌激素 2.1 前言.....................................................8 2.2電泳分離模式..............................................8 2.2.1 微胞電動力毛細管層析法(MEKC)..........................9 2.2.2 MEKC分離機制..........................................10 2.3 藥品與材料...............................................12 2.4 實驗方法.................................................15 2.4.1 萃取雌激素.............................................15 2.4.1.1酵素裂解方式..........................................15 2.4.1.2 酸裂解方式...........................................16 2.4.1.3 沉澱析出方式.........................................16 2.4.2 衍生化方法.............................................17 2.4.2.1 螢光CDB之合成步驟....................................17 2.4.2.2 雌激素與CDB螢光衍生化產物 合成步驟.............................................18 2.4.3 HPLC-FL儀器分析條件....................................18 2.5 微流體晶片分析條件.......................................19 2.5.1 微流體晶片電泳儀裝置...................................19 2.5.3 微晶片管道前處理.......................................21 2.5.4 緩衝溶液及樣品溶液配置.................................21 2.5.5 微晶片電泳進樣及分離條件...............................22 2.6 結果與討論...............................................22 2.6.1衍生化產物NMR鑑定.......................................22 2.6.2衍生化產物MS鑑定........................................25 2.6.3衍生化產物FL測定........................................25 2.6.4衍生化產物HPLC-FL測定...................................26 2.6.4.1衍生物於溶液中的穩定性................................26 2.6.4.2經衍生化UV及FL 強度比較...............................27 2.6.4.3檢量線................................................28 2.6.4.4樣品螢光衍生化產率....................................29 2.6.4.5樣品螢光衍生化條件測試................................30 2.6.4.6樣品萃取條件測試......................................32 2.6.4.7方法偵測極限..........................................34 2.6.4.8 真實樣品.............................................34 2.6.5晶片式電泳..............................................35 2.7 小結.....................................................36 第三章 利用高效能液相層析連接螢光偵測器及高效能液相層析連接質譜分析雌激素 3.1 前言.....................................................38 3.2 LC-MS/MS.................................................38 3.3 藥品與材料...............................................40 3.4 實驗方法.................................................41 3.4.1 萃取雌激素.............................................41 3.4.1.1酵素裂解方式..........................................41 3.4.1.2 酸裂解方式...........................................42 3.4.1.3 沉澱析出方式.........................................43 3.4.2 衍生化方法.............................................43 3.4.3 HPLC-FL儀器分析條件....................................44 3.5 結果與討論...............................................44 3.5.1衍生化產物NMR鑑定.......................................44 3.5.2衍生化產物MS鑑定........................................45 3.5.3衍生化產物螢光光譜......................................46 3.5.4衍生化產物HPLC-FL.......................................46 3.5.5 衍生化反應結果.........................................47 3.5.5.1 衍生物於溶液中的穩定性...............................47 3.5.5.2經衍生化後UV及FL強度比較..............................48 3.5.5.3 檢量線...............................................48 3.5.5.4雌激素螢光衍生化產物合成產率..........................50 3.5.5.5樣品螢光衍生化條件測試................................51 3.5.5.6樣品萃取條件測試......................................54 3.5.5.7方法偵測極限..........................................56 3.5.5.8真實樣品..............................................57 3.5.6 HPLC-MS結果............................................57 3.6 小結.....................................................58 第四章 結論與未來展望 4.1 結論.....................................................60 4.2 未來展望.................................................61 參考文獻.....................................................62

    1. S. Hjerten, J. Chromatogr. Rev., 9 (1967) 122

    2. N. Christeff, A. Carli, C. Benassayag, G. Bleichner, J.F. Vaxelaire and
    E.A. Nunez, Circulatory shock, 36 (1992) 249.

    3. J. Lindholm, E. Eldrup and P. Winkel, Dan. Med. Bull., 37 (1990) 552.

    4. C.P. Walters and W.C. McKinnon, Prenatal Diagn., 13 (1993) 423.

    5. B.F. Crandall, F.W. Hanson, S. Keener, M. Matsumoto and W. Miller, Am. J. Obstet. Gynecol., 168 (1993) 1864.

    6. J.A. Crossley, D.A. Aitken and J.M. Connor, Prenatal Diagn., 13 (1993) 271.

    7. N.J. Wald, H.S. Cuckle, J.W. Densem and R.B. Stone, Br. J. Obstet. Gynecol., 99 (1992) 51.

    8. J.G. Thornton, R.S. Cartmill, J. Williams, S. Holding and R.J. Lilford, J. Perinatal Med., 19 (1991) 151.

    9. J. Ishida, M. Kai and Y. Ohkura, J. Chromatogr., 431 (1998) 249.

    10. Xia Xu, Timothy D. Veenstra, Stephen D. Fox, John M. Roman, Haleem J. Issaq, Roni Falk, Joseph E. Saavedra, Larry K. Keefer, and Regina G. Ziegler, Anal. Chem. 77 (2005) 6646-6654.

    11. Cavalieri, E. L., Stack, D. E., Devanesan, P. D., Todorovic, R., Dwivedy, I., Higginbotham, S., Johansson, S. L., Patil, K. D., Gross, M. L., Gooden, J. K., Ramanathan, R., Cerny, R. L., Rogan, E. G.,Proc. Natl. Acad. Sci. U.S.A, 94 (1997) 10937-10942.

    12. Fishman, J., Martucci, C., J. Clin. Endocrinol. Metab. 51 (1980) 611-615.

    13. McGuinness, B. J., Power, M. J., Fottrell, P. F., Clin.Chem. 40 (1994) 80-85.

    14. Klug, T. L., Bradlow, H. L., Sepkovic, D. W., Steroids 59(1994) 648-655.

    15. Adlercreutz, H., Kiuru, P., Rasku, S., Wahala, K., Fotsis, T. J., Steroid Biochem. Mol. Biol. 92(2004) 399-411.

    16. Masatoki Katayama, Yoshifumi Matsuda, Ken-ichi Shimokawa, Satoru Kaneko, Biomed. Chromatogr. 17(2003) 263-267.

    17. Shimada, K., Tanaka, T., Nambara, T., J. Chromatogr. 223(1981) 33-39.

    18. Shimada, K., Xie, F. M., Niwa,T., Wakasawa, T., Nambara, T., J. Chromatogr. 400(1987) 215-221.

    19. Suzuki, E., Saegusa, K., Matsuki, Y., Nambara, T., J. Chromatogr. 617(1993) 221-225.

    20. Lisha Mao, Chengjun Sun, Hong Zhang, Yongxin Li, Desheng Wu., Analytica Chimica Acta 522(2004) 241-246.

    21. Junichi goto, Nobuharu goto, Fazel shamsa, Makoto saito, Sakae komatsu, Kazuhiko suzaki, Toshio nambara, Analytica Chimica Acta 147(1983) 397-400.

    22. Masatoki Katayama, Hirokazu Taniguchi, J. Chromatogr. 616(1993) 317-322.

    23. Yutaka Saisho, Chika Shimada, Tsuneji Umeda, Analytical Biochemistry. 265(1998) 361-367.

    24. S. Terabe, I. K. Otsuka, A. Tsuchiyu, T. Ando, Anal. Chem. 56(1984) 111

    25. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 59, 363
    (2001)
    26. S. H. Chen,Y. H. Lin, L. Y. Wang, C. C. Lin, G. B. Lee, Anal. Chem.,
    74, 5146 (2002)
    27. C. C. Lin, G. B. Lee, S. H. Chen, Electrophoresis, 23, 3550 (2002)

    28. E. Garcia, J. R. Kirkham, A. V. Hatch, K. R. Hawkins, P. Yager, Lab on
    a Chip, 4, 78 (2004)

    29. 王純慧,〝高效能液相層析儀連接螢光偵測器分析法分析麥角酯醇以評估環境中真菌含量〞民國92年5月(2003年)

    30. 陳誠專,〝利用微流體晶片進行類固醇藥物篩選〞民國94年7月(2005年)

    下載圖示 校內:2007-08-25公開
    校外:2007-08-25公開
    QR CODE