簡易檢索 / 詳目顯示

研究生: 潘建辰
Pan, Chien Chen
論文名稱: 低溫光學顯微鏡系統設計與架設
Design and Setup of a Cryogenic Optical Microscope
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 63
中文關鍵詞: 低溫系統光學顯微鏡真空系統
外文關鍵詞: Cryogenic System, Optical Microscope, Vacuum System
相關次數: 點閱:76下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我將描述如何設計並架設一個在低溫下運作的光學顯微鏡,操作期以在低溫與真空環境下得到元件的清楚影像。
    在論文的第一部分,我會對這個研究主題做一個簡單的背景介紹以及我們的實驗動機。
    在論文的第二部分,我會介紹一些關於本實驗設計及所使用到的裝置,包括使用雷射光源、破壞雷射光圓同調性的佈滿隱形膠帶之CPU風扇、聚光透鏡、分光鏡、CMOS相機,隨著真空腔體內物鏡位置不同利用搭配滑軌的光學桌板,將光源導入真空腔體下方視窗內之正確地物鏡位置,以利於腔體內元件在CMOS相機裡成像;以及我設計的一個樣品轉接固定台、為了防止熱輻射散失額外設計放置台封蓋和隔熱層,可以讓其裝置在Low vibration interface上,使元件在低溫系統降溫時可以盡量維持在我們需要的溫度;再來是利用焊接式金屬波紋管、垂直升降平台、大檯面XY軸移動平台、小型雙軸移動平台、鋁擠型調整三軸,使物鏡能夠微調位置讓元件能對焦及調整到想要看到的位置;最後還有我設計的三種不同倍率的物鏡鏡架搭配步進馬達及設計的馬達架,能使我們在低溫真空腔體中切換不同倍率的物鏡;還有降溫時,為了避免跟Low vibration interface接觸而抬升Cold Heads設計的滑輪配重塊機構。
    在論文的第三部分,我會介紹實驗的操作步驟,裝置的架設順序以及如何操作各裝置使其可調整焦距及我們想成像出的Device位置。
    在論文的第四部分,我將會總結我們這次得到的實驗結果,討論運用我設計的實驗方法幫助我們在低溫真空系統中,能得到清楚的元件上樣品的成像及Device在降溫期間的電阻變化。

    I will describe my design and installation of a cryogenic optical microscope and obtain clear images of device in operation.
    In the first part of the paper, I will give a brief background on this research topic and the motivation for our experiments.
    In the second part of the paper, I will introduce the experimental design and the parts of its components including the use of a laser light source, a diffuser by employing a CPU fan covered with invisible tape, a condenser lens, a beam splitter, a CMOS camera, and a vacuum chamber. Because the positions of the objective lens in the body are different, the optical table board with the slide rail is used to guide the light source into the correct position of the objective lens in the window below the vacuum chamber, so as to facilitate the imaging of the components in the chamber in the CMOS camera as well as a sample transfer fixing table I designed. In order to prevent heat radiation loss, the table cover and heat insulation layer are designed and installed on the low vibration interface, so that the components can be maintained at the desire temperature. Furthermore, the use of welded metal corrugations tubes, a vertical lifting platforms, a large table XY axis mobile platform, two small two-axis mobile platform, aluminum extrusion adjustment three-axis platforms are use so that the objective lens can be fine-tuned to the position we want to see. I design a holder to mount three different objectives. The holder can be moved by a stepping motor, which enables us to change different objective lens at low temperature. I also design a method to raise and the cold heads to avoid contact with the low vibration interface when cooling down. Finally, I show my design of the pulley counterweight mechanism.
    In the third part of the paper, I will introduce the installation procedures of the components, the operation steps of the experiment, and how to adjust the cryogenic microscope to image the desired devices.
    In the fourth part of the paper, I will summarize the experimental results I obtained, including a clear image of the sample and the resistance change of the devices during cooling down.
    In the fifth part of the paper, talking about the conclusion and future prospect. It summarizes the research in a few paragraphs and makes suggestions for future research directions.

    摘要 I Extended Abstract II 誌謝 XVI 目錄 XIX 表目錄 XIX 圖目錄 XIX 符號 XXIV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 動機與目的 3 1-4 論文架構 3 第二章 實驗設計與運用原理 8 2-1 低溫真空系統設置 8 2-1-1 Cold Heads 8 2-1-2 LowVibration Interface 8 2-1-3 工業用冰水機 9 2-2 光路設置 9 2-3 真空腔體及冷凍系統外部設置 11 2-3-1 真空腔體及光學視窗 11 2-3-2 更換樣本機制 12 2-3-3 調焦定位機制設置 12 2-4 真空腔體內部設置 13 2-4-1 Device製作 14 2-4-2 樣品轉接固定台 14 2-4-3 物鏡切換機制 15 第三章 實驗架設與操作步驟 34 3-1 實驗架設步驟 34 3-1-1 真空腔體安裝流程 34 3-1-2 光學系統架設 35 3-1-3 氦氣體管線架設步驟 36 3-1-4 Cold Heads升降系統架設步驟 36 3-1-5 儀器架設 37 3-2 實驗操作流程 38 第四章 結果與討論 52 4-1 降溫期間 Cold Heads & Low Vibration Interface 電阻變化及 Device 成像 52 4-2 Device 降溫期間電阻變化及系統最低溫度 52 4-3 Device降溫期間的成像與圖像分析 53 第五章 結論 61 5-1 本文結論 61 5-2 未來展望 61 參考文獻 62

    [1] "Indium" from Wikipedia (17 July, 2022) Retrieved from https://en.wikipedia.org/wiki/Indium
    [2] Yifan Cheng, Nikolaus Grigorieff, Pawel A. Penczek and Thomas Walz, " A Primer to Single-Particle Cryo-Electron Microscopy," cellpress, vol. 161, p. 438-449, 2015.
    [3] Weixing Li, Simon C. Stein, Ingo Gregor, and Jorg Enderlein, " Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy," Optics Express, vol. 23, pp. 3770-3783, 2015.
    [4] Siegfried Weisenburger, " Cryogenic Super-Resolved Fluorescence Microscopy," Deutsche Nationalbibliographic, vol. 1, pp. 25-40, 2016.
    [5] Hyeongseop Jeong, Seong-Gyu Lee, Hee-Seok Kweon and Jaekyung Hyun, " Facility for high resolution cryo-electron microscopy of biological macromolecules at Korea Basic Science Institute," Biodesign, vol. 5, pp. 96-102, 2017.
    [6] Christiaan N. Hulleman, Maximiliaan Huisman, Robert J. Moerland, David Grünwald, Sjoerd Stallinga, and Bernd Rieger, " Polarized stimulated-emission depletion and dark-state lifetime at vacuum and cryogenic temperature conditions," Physical Review A, vol. 104, pp. 063516, 2021.
    [7] Qingru Li, Christiaan N. Hulleman, Robert J. Moerland, Elil Mailvaganam, Srividya Ganapathy, Daan Brinks, Sjoerd Stallinga, and Bernd Rieger, " Waveguide-based total internal reflection fluorescence microscope enabling cellular imaging under cryogenic conditions," Optics Express, vol. 29, pp. 34097-34108, 2021.
    [8] 晉惠冷卻機械股份有限公司, "冰水機(chiller)如何製冷,冰水機原理,冰水機是怎麼運作的,"( 25 August, 2021) Retrieved from https://cooling-tower.com.tw/solution-tw/skill-knowledre-tw/chiller-tec/chiller-principle.
    [9] Michael W. Davidson and Mortimer Abramowitz, " OPTICAL MICROSCOPY," vol. 1 , Aug 15 2002, Retrieved from https://doi.org/10.1002/0471443395.img074.
    [10] Paul C. Goodwin, " A primer on the fundamental principles of light microscopy: Optimizing magnification, resolution, and contrast," Molecular Reproduction and Development, vol. 82, pp. 502-507, 2015.
    [11] Neil T.Peacock, " Flange and Component Systems," academic press, vol. 12, pp. 409-421, 1998.
    [12] Dejan, " How To Control a Stepper Motor with A4988 Driver and Arduino," (14 march, 2021) Retrieved from https://howtomechatronics.com/tutorials/arduino/how-to-control-stepper-motor-with-a4988-driver-and-arduino/.
    [13] Khan Academy"Current, resistance, and resistivity review," Retrieved from https://www.khanacademy.org/science/high-school-physics/dc-circuits/electric-current-resistivity-and-ohms-law/a/resistance-and-resistivity-ap1.
    [14] Sumitomo, "Cold Heads Technical manual," pp. 1-20, 2016.
    [15] Cold Edge, "Low Vibration Interface owner's manual," pp. 1-25, 2009.
    [16] K. G. Libbrecht, E. D. Black, and C. M. Hirata, " A basic lock-in amplifier experiment for the undergraduate laboratory," American Journal of Physics, vol. 71, pp. 1208-1213, 2003.
    [17] G. K. White and S. B. Woods, " Indium Resistance Thermometer; 4 to 300°K," AIP Publishing, vol. 28, pp. 638-641, 2004.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE