| 研究生: |
張勝雄 Chang, Sheng-Shiung |
|---|---|
| 論文名稱: |
三種白蝦丙酮酸激酶異構型基因之選殖與表現 Identification and expression analysis of the pyruvate kinase isoforms in Litopenaeus vannamei |
| 指導教授: |
王涵青
Wang, Han-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 瓦伯效應 、白點症病毒 、白蝦 、丙酮酸激酶 |
| 外文關鍵詞: | Warburg effect, WSSV, Litopenaeus vannamei, pyruvate kinase |
| 相關次數: | 點閱:161 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去二十年,蝦類養殖產業一直遭受到白點病 (WSD) 的威脅。白點病是一種由白點症病毒 (WSSV) 所引起的嚴重疾病。這種疾病造成的高死亡率使全球的蝦類養殖產業蒙受了嚴重的經濟損失。儘管了解白點症病毒的致命機制是何等重要,但至今卻仍無法清楚地了解。在本實驗室之前的研究中發現,受白點症病毒感染之白蝦血球組織發生了代謝的變化,包含了葡萄糖消耗及乳酸生成的增加。這種有氧糖解 (aerobic glycolysis) 的現象也同樣在腫瘤細胞或其他高度增生的細胞中被發現,而此現象也被稱為瓦伯效應 (Warburg effect)。目前研究發現,哺乳動物中存在四種丙酮酸激酶異構型 (PK-M1、PK-M2、PK-L及PK-R)。而最近在腫瘤細胞的研究則指出為了使腫瘤細胞進行有氧糖解,細胞中的PK-M1異構型轉變為PK-M2型是必需的。雖然對於白點症病毒引起的類瓦伯效應已經展開相關的研究,但對其分子調控機制則尚未了解。在這個研究中,我們探討了蝦類丙酮酸激酶與白點症病毒引起的類瓦伯效應之間的關係。在這研究中發現白蝦丙酮酸激酶 (LvPK) 基因有三種型態,分別稱為LvPK1、LvPK2及LvPK3。目前的結果顯示此三種型態的丙酮酸激酶可能是從同一個基因座藉選擇性剪接而來。除了轉譯區,此外在結果中發現選擇性剪接也發生在5’端及3’端未轉譯區。三種丙酮酸激酶在蝦組織中有不同的表現形式,因此他們可能在細胞中參與不同的作用。此外也藉由半定量反轉錄聚合酶鏈鎖反應 (RT-PCR) 偵測三者在白點症病毒感染後的反應。結果顯示LvPK3最有可能參與有氧糖解反應,但仍需更進一步的研究去分析其在白點症病毒引起的類瓦伯效應中所扮演的角色。
For over two decades, the shrimp aquaculture industry has been threatened by white spot disease (WSD). WSD is a serious viral disease caused by WSSV, the white spot syndrome virus. This disease can cause high mortality and severe economic losses worldwide in the shrimp industry. Despite its importance, the pathogenesis of WSSV remains unclear. In our previous study, WSSV-infected hemocytes were found to have a metabolic alternation involving increased glucose consumption and lactate production. In tumors and other highly proliferative cells, aerobic glycolysis is also found, and has been named the Warburg effect. In mammals, four pyruvate kinase (PK) isoforms have been identified (PK-M1, PK-M2, PK-L and PK-R). Recent tumor research has shown that in order to promote aerobic glycolysis in tumor cells, it is essential to switch from PK-M1 to PK-M2. Although the WSSV-induced Warburg-like effect has been investigated, the molecular regulation details in this process are still unclear. In this research we investigated the involvement of shrimp PK in a WSSV-induced Warburg effect. The pyruvate kinase gene was identified from Litopenaeus vannamei. Three isoforms were isolated, named LvPK1, LvPK2 and LvPK3. Our data suggest that these three isoform are generated from a single locus subject to alternative splicing. We found that, not only the coding regions, the alternative splicing events of PK generation are occurred on 5’UTR and 3’UTR. LvPKs 1-3 have different expression patterns in shrimp tissue. Therefore, they are assumed to play different physical roles. Responses of LvPks after WSSV infection in different tissues were also investigated using semi-quantitative RT-PCR. We found that LvPK3 may be most related to aerobic glycolysis. Further research is necessary, however, to evaluate its role in the WSSV-induced Warburg-like effect.
1. Arturo SP, José Guadalupe SO, Alma B. PU, Adriana MA, Gloria YP. (2008) Response of the phosphofructokinase and pyruvate kinase genes expressed in the midgut gland of the Pacific white shrimp Litopenaeus vannamei during short-term starvation. J Exp Mar Bio Ecol. 36:279-289.
2. Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R, Bucala R. (2002) High expression of inducible 6-phosphofructo-2-kinase/ fructose-2, 6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res. 62:5881-5887.
3. Bell DA, Taylor JA, Butler MA, Stephens EA, Wiest J, Brubaker LH, Kadlubar FF, Lucier GW. (1993) Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis. 14:1689-1692.
4. Black DL. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 72:291-336.
5. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R. (2010) Aquaculture: global status and trends. Philos Trans R Soc Lond B Biol Sci. 365:2897-2912.
6. Chen IT, Aoki T, Huang YT, Hirono I, Chen TC, Huang JY, Chang GD, Lo CF, Wang HC. (2011) White spot syndrome virus induces metabolic changes resembling the warburg effect in shrimp hemocytes in the early stage of infection. J Virol. 85:12919-12928.
7. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 452:230-233.
8. Clower CV, Chatterjee D, Wang Z, Cantley LC, Vander Heiden MG, Krainer AR. (2010) The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci U S A. 107:1894-1899.
9. Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M. (2010) Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc Natl Acad Sci U S A. 107:10696-10701.
10. Di giammartino DC, Nishida K, Manley JL. (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell. 43:853-866.
11. Eigenbrodt E, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis R. (1992) Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit Rev Oncog. 3:91-115.
12. Fantin VR, St-Pierre J, Leder P. (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 9:425-434.
13. Grosso AR, Martins S, Carmo-Fonseca M. (2008) The emerging role of splicing factors in cancer. EMBO Rep. 9:1087-1093.
14. Heaton NS, Randall G. (2010) Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe. 8:422-432.
15. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. (2007) The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 14:185-193.
16. Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF. (2009) Whispovirus. Curr Top Microbiol Immunol. 328:197-227.
17. Mazurek S. (2011) Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 43:969-980
18. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 15:300-308.
19. Muñoz ME, Ponce E. (2003) Pyruvate kinase: current status of regulatory and functional properties. Comp Biochem Physiol B Biochem Mol Biol. 135:197-218.
20. Noguchi T, Inoue H, Tanaka T. (1986) The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 261:13807-13812.
21. Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T. (1987) The L-and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem. 262:14366-14371.
22. Ozaki T, Nakagawara A. (2011) p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol. 2011:603925.
23. Pongsomboon S, Tang S, Boonda S, Aoki T, Hirono I, Tassanakajon A. (2011) A cDNA microarray approach for analyzing transcriptional changes in Penaeus monodon after infection by pathogens. Fish Shellfish Immunol. 30:439-446.
24. Walker PJ and Mohan CV. (2009) Viral disease emergence in shrimp aquaculture: origins, impact and the effectiveness of health management strategies. Reviews in Aquaculture. 1, 125–154.
25. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. (2004) 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to- head with a bifunctional enzyme that controls glycolysis. Biochem J. 381:561-579.
26. Sakai H. (2004) Possible structure and function of the extra C-terminal sequence of pyruvate kinase from Bacillus stearothermophilus. J Biochem. 136:471-476.
27. Shimada N, Shinagawa T, Ishii S. (2008) Modulation of M2-type pyruvate kinase activity by the cytoplasmic PML tumor suppressor protein. Genes Cells. 13:245-254.
28. Spellman R, Llorian M, Smith CW. (2007) Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell. 27:420-434.
29. Steinberg P, Klingelhöffer A, Schäfer A, Wüst G, Weisse G, Oesch F, Eigenbrodt E. (1999) Expression of pyruvate kinase M2 in preneoplastic hepatic foci of N-nitrosomorpholine-treated rats. Virchows Arch. 434:213-220.
30. Tamura K, Dudley J, Nei M, Kumar S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 24:1596-1599.
31. Vander Heiden MG, Cantley LC, Thompson CB. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 324:1029-1033.
32. Walker PJ, Winton JR. (2010) Emerging viral diseases of fish and shrimp. Vet Res. 41:51.
33. Wang X, Tomso DJ, Liu X, Bell DA. (2005) Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes. Toxicol Appl Pharmacol. 207:84-90.
34. Warburg O. (1956) On respiratory impairment in cancer cells. Science. 124:269-270.
35. Warburg O, Poesener K, Negelein E. (1924) Uber den Stoffwechsel der Tumoren. Biochem Z. 152:319–344.
36. Weinhouse S. (1976) The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 87:115-126.
37. Wu X, Zhou Y, Zhang K, Liu Q, Guo D. (2008) Isoform-specific interaction of pyruvate kinase with hepatitis C virus NS5B. FEBS Lett. 582:2155-2160.
38. Yokota S, Okabayashi T, Fujii N. (2010) The battle between virus and host: modulation of Toll-like receptor signaling pathways by virus infection. Mediators Inflamm. 184328.
39. Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Dürr P. (1999) Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci U S A. 96:1291-1296.
校內:2017-02-16公開